

lodine evidence summary report

Summary of the evidence used to inform development of lodine Nutrient Reference Values for Australia and New Zealand

October 2025

Contents

Purpose	5
lodine background	6
Function, physiology and metabolism	6
Dietary sources of iodine	
Bioavailability factors	
Health effects of insufficiency or excess	8
lodine deficiency disorders	
Excess iodine	1C
Measuring intake or status	11
Dietary assessment methods	
Urinary assessment methods	12
Breast milk iodine concentration during lactation	
Secondary biomarkers of status	15
Current recommendations and international comparisons	17
Nutritional adequacy recommendations	17
Basis for current recommendations	
Comparison with international values	19
Upper Levels	20
Basis for current recommendations	20
Comparison with international values	21
Australian and New Zealand context	23
Population status and intakes	23
Australia	23
New Zealand	28
Key health outcomes of relevance to the Australian and New Zealand context	30
Thyroid disease in Australia and New Zealand	30
Child neurocognitive development	31
Summary of Evidence	32
Physiological requirements	32
Balance and thyroid accumulation studies	32
Requirements to support thyroid hormone synthesis and basal losses	32
Requirements during pregnancy	33
Requirements during lactation	34
Intake, status and health relationships	35
Intake and status	35

Health outcomes in adults	35
Health outcomes during pregnancy and lactation	39
Health outcomes in children and adolescents	45
Derivation of draft NRVs	46
Nutritional adequacy recommendations	46
Adults	46
Pregnancy	46
Lactation	47
Children and adolescents	48
Upper Level (UL)	50
Adults	50
Pregnancy	50
Lactation	51
Children and adolescents	51
Benchmarking	53
International comparisons	53
Nutritional adequacy recommendations	53
Upper Levels	
Food system and foundation diet modelling	55
Adults	
Pregnancy	56
Lactation	56
Children and adolescents	
Proposed Recommendations	58
References	59
Appendix A - Methods for identifying evidence	76
International guidance and advice	
Systematic reviews	77
Primary studies/data	79
Evidence scoping for priority PECO criteria	79
Australian and New Zealand contextual evidence	81
Appendix B - Supplementary analyses	82
Sang et al (2012)	
Appendix C - Systematic reviews	
Characteristics of systematic reviews	
Risk of bias of systematic reviews	
Appendix D - Outcomes from review of primary studies	
Appendix = Outcomes members of primary stadies minimum minimum	

Identified studies	 106
Appendix E - Evidence-to-Decision Framework	 110
Iodine - Requirements for avoiding deficiency	 110
Background	 110
Evidence to decision tables	 113
References	 145
lodine - Upper Levels	
Background	 152
Evidence to decision table	
References	180

Purpose

This report has been prepared to inform the review of the Australian and New Zealand Nutrient Reference Values for iodine. It aims to summarise the body of evidence considered by the Iodine Expert Working Group and document the process for deriving NRV recommendations.

The report includes evidence from the following sources:

- Studies identified during an NHMRC-commissioned review (see 'Appendix D Outcomes from review of primary studies')
- Evidence reviews commissioned or conducted by comparable international bodies for the purposes of establishing iodine nutrient reference values:
 - o Nordic Nutrition Recommendations (2023) *lodine: a scoping review for Nordic Nutrition Recommendations 2023 (Blomhoff et al. 2023)*
 - o EFSA (2014) Scientific Opinion on Dietary Reference Values for Iodine
 - EURRECA (2013) Estimating Iodine Requirements for Deriving Dietary Reference Values (Ristić-Medić 2013)
- Other reports published by key international bodies relevant to establishing iodine nutrient reference values:
 - UK SACN
 - SACN Statement on Iodine and Health (2014)
 - Statement on the potential effects that excess iodine intake may have during preconception, pregnancy and lactation (2022)
 - o WHO & FAO (2004) Vitamin and mineral requirements in human nutrition
 - WHO (2013) Urinary iodine concentrations for determining iodine status in populations
- Relevant systematic reviews published within the previous 10 years, with an emphasis on high quality, more recent systematic reviews (see 'Appendix C'
- Primary evidence or data relevant to the Australian and New Zealand context

Further information about the approach for identifying evidence is presented in 'Appendix A - Methods for identifying evidence'.

lodine background

Function, physiology and metabolism

lodine is a mineral that is found in soil and ocean waters and is naturally present in certain foods as inorganic iodide. It is an essential nutrient required for synthesis of thyroid hormones such as thyroxine (T4) and triiodothyronine (T3). These hormones are involved in regulating cellular processes including metabolism, cellular oxidation and thermoregulation. They also play an essential role in early development, growth and maturation of organs including the brain, muscles, heart, pituitary gland, kidneys reproductive system and bones (EFSA 2014). Consequently, it is imperative that individuals are iodine sufficient during pregnancy and lactation, to ensure healthy growth and development.

lodine ingested from food is reduced to iodide in the gut, with absorption occurring primarily in the small intestine. Iodide transport into the thyroid gland and extrathyroidal tissue is mediated by an intrinsic plasma membrane protein known as the sodium/iodide symporter (NIS) (Dohán et al 2003). Once in the thyroid gland, iodide is concentrated, converted to iodine and combined with tyrosine residues of thyroglobulin (Tg) to form iodinated Tg. Iodinated Tg accumulates in the thyroid, providing for the storage of iodine and Tg - a precursor for thyroid hormone synthesis. This complex process - involving the thyroid, pituitary, brain and peripheral tissues - involves removal of iodinated tyrosines from Tg via proteolytic enzymes, releasing T4 into circulation (Kidd et al 1974). Deiodination of T4 then produces T3 or reverse T3 - an inactive form. Excess iodine is excreted through urine, with small amounts also excreted via faeces and sweat (Lamberg 1993).

Dietary sources of iodine

lodine is found in both food and water, predominantly as iodide. The use of sanitising solutions and iodophores during food production may also contribute significant amounts of iodine in the food supply (EFSA 2014). The level of iodine in cereal and grain foods varies depending on the iodine content of soil in which the food is grown. A 2024 Australian study identified that the elevation and region (State) in which Australian wheat was grown predicted iodine concentration, along with rainfall and topsoil texture interactions (Penrose et al 2024). Iodine is water-soluble and leaches out of surface soils in geographical areas prone to high rain, snow fall or floods (Küpper et al 2011). Consequently, low soil iodine levels are typical for New Zealand and in some parts of Australia such as Tasmania (AIHW 2016).

lodine-rich foods include sea and marine products such as fish, shellfish and seaweed (Barkley and Thompson, 1960, Blikra et al 2022), eggs and milk and their products, and iodised salt (EFSA 2014). The levels of iodine in animal products such as meat, dairy and eggs varies based on the iodine content of feed. Australian food composition data suggests that the predominant sources of iodine in food include iodised salt, seafood, egg and dairy products¹, although iodine levels in the latter have declined with ceasing use of iodine-based sanitisers in dairy production (AIHW 2016).

¹ Australian food composition database Release 2.0, available from: https://afcd.foodstandards.gov.au/foodsbynutrientsearch.aspx?nutrientID=I

In 2009, Australia and New Zealand introduced mandatory fortification requirements for the addition of iodine (via iodised salt) to bread. Subsequent analytical surveys conducted post-fortification found that cereal and cereal products were the main contributor to estimated iodine intake in Australians aged 17 and older, and the second greatest contributor to dietary iodine in children aged 2 - 16 years (FSANZ, 2016). Similarly, the 2023 National Nutrition and Physical Activity Survey (NNPAS) identified cereals (18.1%), milk (13.7%) and bread/bread rolls (11.6%) as major contributors to iodine intake (ABS, 2025c). These findings were echoed by New Zealand analyses, which found that bread was the main contributor to dietary iodine in children aged 5 to 14 post-fortification (NZ MPI, 2014, Skeaff & Lonsdale-Cooper, 2013).

Bioavailability factors

Previous work has estimated the absorption efficiency of iodine at between 90 and 92% (Thomson et al 1996, IOM 2001, Jahreis et al 2001, Aquaron et al 2002, EFSA 2014). However, iodine absorption is not fully understood, and evidence suggests that this assumption may not hold where intakes are very high (UK SACN 2014).

A range of factors have been identified that reduce the absorption of iodide, including humic acid in drinking water (Gaitan 1990), and thiocyanates, isothiocyanates, nitrates, fluorides, calcium, magnesium and iron present in food or water (Ubom 1991). Perchlorate compounds in food and water also reduce iodine uptake (Lisco et al 2020). However, the 24th Australian Total Diet Study did not detect perchlorates in any tap water samples across the eight jurisdictions, leading FSANZ to conclude that perchlorate contamination is unlikely to pose an appreciable health risk in Australia (FSANZ 2014).

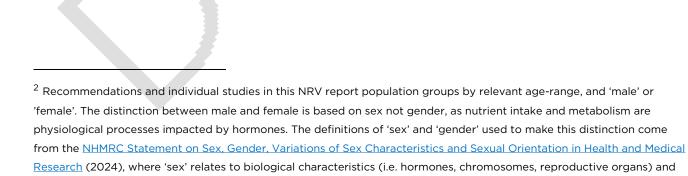
Some compounds - known as goitrogens - impair or prevent iodine transport in the body, resulting in impaired iodide uptake, iodine deficiency and - subsequently - goitre formation. Known goitrogens in food include cassava, millet, maize, and cruciferous vegetables (Gibson, 1991). However, the consumption of goitrogenic foods is not expected to materially impact iodine intake, where iodine intake is adequate and for those who consume a wide variety of foods (Zimmermann et al. 2008).

Thiocyanates in tobacco cigarette smoke are also goitrogenic, competitively inhibiting iodine uptake, and impacting thyroid hormone production (Colzani et al 1998, Knudsen et al 2002, Shields et al 2009). Electronic cigarette users may be similarly impacted, with studies reporting levels of thiocyanates in saliva similar to that of tobacco cigarette smokers (Flieger et al. 2019)

Deficiencies in some micronutrients - including selenium, iron and zinc- have been reported to affect iodine absorption (Yang et al 1997, Kohrle 1999, Thomson 2004, Zimmermann et al 2000, O'Kane et al 2018). More broadly, other nutritional factors may affect thyroid metabolism or impair iodide uptake. For example, reduced thyroid peroxidase (TPO) enzyme activity due to iron or selenium deficiency, or impairment of T3 and T4 function due to vitamin A deficiency (Hess 2010).

The bioavailability of iodine is also mediated by intake, with high iodine intakes associated with reduced thyroid utilisation of iodine (Teng et al. 2011), likely achieved through downregulation of active transport proteins that deliver iodide into the thyroid (Eng et al 2001).

Health effects of insufficiency or excess


Both iodine insufficiency and excess are associated with thyroid dysfunction and disease, including sub-clinical and overt hyper- or hypo-thyroidism, goitre, and potentially thyroid cancer and thyroid autoimmunity (UK SACN 2014).

lodine deficiency disorders

Insufficient iodine intake is associated with a range of adverse health and developmental outcomes, collectively termed 'iodine deficiency disorders' (Hetzel 1983). Table 1 describes the spectrum of health effects arising from iodine deficiency (adapted from Eastman and Zimmermann 2018 and Hetzel 1983). Iodine deficiency disorders affect individuals of all ages², with the range effects varying depending on the developmental stage at which exposure occurs.

Severe deficiency during pregnancy and infancy is of particular concern, due to the potential for serious and irreversible effects on child neurocognitive development, including intellectual impairment, hearing loss, and psychomotor disorders (EFSA 2014). Iodine deficiency is the primary cause of preventable child cognitive impairment world-wide (Ristić-Medić 2013). Although the relationship between severe iodine deficiency during pregnancy and global impairments in child neurocognitive development is well-established, the evidence for mild iodine deficiency is less certain. Robust supportive evidence of consistent adverse neurocognitive effects associated with mild-to-moderate iodine deficiency are lacking, with the evidence base limited by inconsistent findings and significant heterogeneity (Monaghan 2021).

Chronic iodine deficiency can also result in progressive thyroid gland enlargement (goitre) as a compensatory measure to increase iodine storage and support thyroid hormone production (UK SACN 2014). This may progress to hyperthyroidism and can also increase the risk of thyroid cancer (EFSA 2014). Hypothyroidism can also occur due to thyroid hormone dysfunction, affecting metabolic rate, body weight and cognitive function.

'gender' is a social and cultural concept. People who are transgender, gender diverse, who have innate variations of sex characteristics or who do not identify with the biological definition should consult a health practitioner who can consider

their individual needs.

Table 1. Iodine deficiency disorders, by age group and severity (from Brough & Skeaff 2024)

Consequences of iodine deficiency, by age group and severity.

	I	Iodine Deficiency Disorders				
Age group	Mild	Moderate	Severe			
	Goiter —					
All ages	Increased suscep	tibility of thyroid gland	to nuclear radiation			
			Abortion			
Fetus			Stillbirth			
retus			Congenital abnormalities			
			Perinatal mortality			
			Perinatal mortality			
Neonate			Congenital iodine-			
			deficiency syndrome*			
Child and	Impaired cognition -					
Adolescent	Delayed physica	al development				
		Impaired cognition -	,			
		Reduced work produc	ctivity —			
Adults		Iodine-in	duced hyperthyroidism			
		Increased	d hypothyroidism			
	Decreased hypo	thyroidism ———				

^{*}Also known as endemic cretinism.

Sensitive or at-risk groups

Due to the critical role of iodine in early neurocognitive development, the fetus and neonate are particularly sensitive to the effects maternal deficiency during pregnancy and lactation. Individuals with low income, and those with limited access to public health systems - including migrants - may be at greater risk of iodine deficiency, due to lower iodised salt consumption or poor adherence to supplementation recommendations during pregnancy (Magri et al 2019).

Vegans and vegetarians have lower intakes of iodine-containing foods such as meat, seafood, dairy and eggs, and may be at greater risk of deficiency. A systematic review examining modern vegan or vegetarian diets and iodine status found a strong association between vegan diet and iodine deficiency (p<0.001), although this association did not remain when analysis was limited to countries with mandatory salt iodisation (Eveleigh 2023). While vegetarian intakes were also consistently associated with lower UIC than omnivore diets, this difference was not significantly significant. Consumption of dairy milk alternatives has also been associated with reduced iodine intake compared with cows' milk (Dineva et al 2021, Lundquist et al 2024).

Given the role of mandatory iodine fortification of bread in preventing iodine deficiency in Australia and New Zealand, the impact of vegan/vegetarian or dairy-free diets on status may be minimised for individuals who consume bread. Individuals with low commercial bread intake may be at greater risk of deficiency in Australia and New Zealand.

Due to the goitrogenic effects of tobacco smoke and e-cigarettes, smokers and vapers are at greater risk of iodine deficiency. Similarly, individuals with high intakes of goitrogenic foods may be at increased risk of deficiency, although the risk may be negligible where iodine intake is adequate and a wide variety of foods are consumed (Zimmermann et al. 2008).

Excess iodine

High iodine intakes result in a transient stunning of the thyroid - known as the Wolff-Chaikoff effect - which halts thyroid hormone synthesis. However, in healthy adults, intrinsic regulatory mechanisms within the thyroid facilitate an 'escape' from the Wolff-Chaikoff effect and hormone synthesis recommences after a few days. As a result of these regulatory mechanisms, high intakes of iodine are generally well-tolerated in individuals without underlying disease or sensitivity. However, in some individuals - most commonly those with underlying thyroid disease or abnormalities - high iodine intakes can result in hypothyroidism or hyperthyroidism, depending on the nature of underlying thyroid dysfunction (Sohn et al. 2024, Katagiri et al 2017). This typically occurs via chronic high levels of exposure, although it may also occur from acute high exposure such as that arising from use of iodinated contrast media.

An increased risk of both overt and subclinical hypothyroidism is observed in regions with excess intakes (Katagiri et al 2017), with high habitual intakes arising from diets high in seaweed, high levels of iodine in drinking water or excessive salt iodisation. Subclinical hypothyroidism is a risk for progression to overt hypothyroidism, predominantly due to underlying autoimmune thyroid disease, indicated by higher TSH (> 10 mU/L) and positive antithyroid antibodies. Epidemiological data also suggest that chronic subclinical hypothyroidism is associated with an increased risk of cardiovascular disease (Razvi et al 2010, Delitala et al 2017, Inoue et al 2020).

Elevated TSH has previously been used as a marker for establishing recommendations for the Upper Level of iodine intake, in the absence of more robust biomarkers for iodine excess. However, there is uncertainty surrounding the clinical significance of TSH values outside of normal reference ranges, with a range of factors identified that can influence TSH levels and significant individual variation in thyroid hormone levels observed (Razvi et al 2019). An Australian study found that extending the upper TSH reference range by an additional 1-2 mU/L before initiating FT4 testing had little effect on case finding, furthering questions about the sensitivity of TSH and measures of sub-clinical hypothyroidism as markers of latent thyroid dysfunction (Henze 2017). Nevertheless, in the absence of more sensitive markers or a well characterised relationship with iodine exposure, the association between iodine intake and elevated TSH provides the most suitable end point for establishing Upper Level recommendations. Although the normal reference range is between 0.1-4.0 or 5.0 mU/L (depending on the assay used), a 2006 study reported the lowest incidence of thyroid dysfunction when TSH was between 1.0 and 1.9 mU/L (Teng et al 2006).

Chronic exposure to excess iodine has also been associated with autoimmune thyroid disease (Wang et al 2019) and thyroid cancer, although the latter is likely to be multi factorial and a clear relationship with iodine exposure is not well-established (Cao et al 2017, Lee et al 2017, Weng et al 2017). Excessive habitual iodine intake may also have adverse effects on child intellectual development (Li et al 2022).

Sensitive or at-risk groups

Individuals with diets high in seaweed (including the use of seaweed-containing herbal medicines or supplements) may be at greater risk of excess due to the high iodine content in certain seaweed species or products (EFSA 2023) - in particular for dry, unprocessed brown seaweed (Blikra et al. 2022, Blikra et al. 2024). Further research is required to understand the effects of seaweed intake on iodine status and health, including the risks associated with frequent versus occasional

consumption (Blikra et. al 2024). High iodine exposure may also occur through exposure to iodinated contrast media, or antiseptics containing iodine (Gunnarsdóttir and Brantsæter 2023).

Individuals with a recent history of iodine deficiency are more sensitive to the effects of high iodine intake, particularly where intake increases suddenly (Sohn et al. 2024). Such groups may experience adverse health outcomes at lower levels of intake than those without a recent history of deficiency. Such effects may endure for several years post-fortification, with rates of thyrotoxicosis declining to below baseline within 7 to 8 years (Braverman and Pearce, 2024).

lodine excess can also disrupt normal thyroid function in people with underlying thyroid disease. This includes autoimmune thyroid disease - a common form of thyroid disease primarily affecting adult women (Mammen and Cappola 2021) - or nodular thyroid disease, most common in the elderly or in people with a previous history of iodine deficiency (Miller et al 2016).

Premature neonates and the developing foetus are particularly sensitive to the effects of excess iodine, as they lack the mechanism to escape from the Wolff-Chaikoff effect which begins to develop at around 36 weeks gestation (Sohn et al. 2024), fully maturing during the early neonatal period (Berbel and de Escobar 2011).

Measuring intake or status

lodine intakes vary substantially day-to-day, which presents a challenge for quantifying individual intakes and for inferring information about individual status from short-term measures of intake.

Dietary assessment methods

Food frequency or 24-hour dietary recall approaches are frequently used in research, and present affordable options with low participant burden for completion. However, these self-reported measures are prone to bias including recall and social desirability response bias. More robust measures have been developed to address these limitations, such as duplicate diets and weighed food records, however these methods present their own challenges.

It is also difficult to ascertain individual status based on dietary intakes which reflect intakes at a specific point in time. In people with iodine replete diets, iodine is incorporated into thyroglobulin and this can provide up to 3 months of thyroid hormone, even during periods of low iodine intake (Vanderpas, 2003).

Dietary assessment methods also rely on accurate food composition databases (FCDBs) that reflect contemporary iodine content of foods relevant to the local food supply. Developing comprehensive, up to date FCDBs has been a global priority, with FCDBs now established - and maintained - in most developed countries. However, challenges in establishing and maintaining food FCDBs in developing countries remain, including in reliance on incomplete or outdated data, or data from other jurisdictions to estimate nutrient intakes (Al-Balushi et al 2023).

Some FCDBs may not include iodine data, due to the cost and complexity associated with deriving estimates where there is substantial geographic and seasonal variability of iodine content in food (Ershow et al 2018). Finally, difficulty in quantifying iodine intake from use of iodised salt at the table and in cooking also present challenges. Consequently, studies that assess iodine intake using dietary assessment methods should be carefully appraised to consider the robustness of the methods used for estimating intake.

A 2019 review examined the accuracy of various measures for estimating iodine intake in children, comparing dietary methods (24-hour dietary recall; duplicate diets) and 24-hour urine (Peniamina et al 2019). It found that 24-hour dietary recall measures may underestimate intake, whereas duplicate diets and 24-hour urine provided similar estimates.

Urinary assessment methods

Measures of urinary iodine are used as established biomarkers for iodine intake and status, although these measures have limitations.

As more than 90% of dietary iodine is excreted in the urine, urinary iodine is used as an indicator of recent iodine intake (Thomson et al 1996, IOM 2001, Jahreis et al 2001, Aquaron et al 2002, EFSA 2014). Urinary iodine can be measured over 24-hours urinary iodine excretion (UIE) or in a spot urine sample urinary iodine concentration (UIC). Corrected measures of UIC are also often reported, for example, correcting for urinary creatinine (I:Cr ratio), to address variation in urinary volume with spot sample collection. Both 24-hour UIE and UIC are associated with inter- and intraindividual variation, thus neither should be used to assess individual iodine status, but rather to assess the iodine status of a group or population. Sufficiently large sample sizes are required to account for individual variation and estimate population iodine status with sufficient precision.

Urinary iodine excretion (UIE)

lodine status can be approximated from 24-hour urinary iodine excretion (UIE). The collection of 24-hour urine samples can account for diurnal variation in iodine excretion and is the reference standard for measuring population status. However, this measure has a high respondent burden, and is contingent on patient adherence to sampling protocols, with results impacted by incomplete sampling or storage among other limitations (Bottini et al 2020). There is no internationally accepted method to determine if all urine voided during the 24-hours was collected (i.e. completeness).

Furthermore, the relationship between UIE and dietary iodine intake is not well characterised across a broad range of intakes. In steady state conditions, urinary excretion reflects recent intake, which may vary significantly over time and may not reflect habitual intake. Furthermore, UIE may not be a reliable measure of recent intake or status following a change in iodine intake, with wide variation in the time taken to achieve a steady state, ranging from one to two weeks in iodine replete subjects to 7 to 9 months for infants and young children in mildly deficient areas, or adults with goitre due to iodine deficiency (EFSA 2014). Consequently, UIE may not be a reliable measure of intake or status in populations where iodine intake has recently changed.

Furthermore, it has been suggested that the association between UIE and intake - and the assumption that 90-92% of ingested iodine is absorbed - may apply in a narrow range of intakes that is not yet fully characterised (UK SACN 2014). Evidence from Japan suggests that homeostatic processes result in reduced iodine uptake in those with high habitual intake (Miyai et al 2008, Nagataki et al 1967). UIE may also underestimate iodine intake at low exposure levels, as iodine excretion is reduced in these circumstances, owing to homeostatic adaptations associated with low circulating T3 and T4 and elevated TSH (SACN 2014). Finally, absorption during pregnancy may deviate from the observed 90-92% rate due to physical alterations including:

• increased iodine uptake through hormonal stimulation of the iodine transport system (Arturi et al 2002, Glinoer 2001)

 increases in the glomerular filtration rate of iodine, resulting in and renal iodine output has also been shown to vary over the course of pregnancy (Stilwell et al 2008; Dafnis and Sabatini 1992).

This is supported by findings from several studies, which suggest there may be poor correspondence between maternal UIC and iodine intake during pregnancy, particularly with initiation of iodine supplementation (Abel et al 2018, Mridha et al 2017).

Despite these limitations, UIE currently represents the best available biomarker for inferring iodine intake in non-pregnant adults. Iodine intake can be estimated from 24-hour UIE using the formula:

Daily iodine ingested ($\mu g/day$) = UIE ($\mu g/day$) ÷ 0.92 (absorption efficiency)

Urinary iodine concentration (UIC)

The use of spot urine samples is simpler and consequently, more frequently measured and reported in the literature and public health monitoring. Furthermore, the epidemiologic criteria described in Table 2 is based on UIC (μ g/L). However, there are limitations to spot urine samples including that they fail to account for diurnal variation in excretion and are subject to individual variation in urinary volume and may be misleading regarding status. For example, high urine volumes will result in lower UIC values which may be misinterpreted as poor iodine status; conversely, low urine volumes will result in raised UIC values, suggesting adequate iodine status where this may not be the case (Als et al 2000, Moreno-Reyes et al 2011, Oblak et al 2024, Rasmussen et al 1999, Johner et al 2010). It has been suggested that between 10 and 12 repeat collections of UIC would be required to estimate individual intakes with 20% precision (König et al. 2011).

Notwithstanding these limitations, UIC is a widely used and accepted biomarker of population status. The World Health Organization (WHO) have developed epidemiologic criteria for assessing population iodine status in school-age children using median urinary iodine concentration (UIC), shown in Table 2. It also recommends that the proportion of the population with UIC below 50 μ g/L should not exceed 20% (WHO, 2007). The cut-offs for children were subsequently extended to include adults (except during pregnancy).

Table 2. WHO epidemiologic criteria for assessing iodine nutrition using Median UIC (Source: WHO 2013)

Population	Median UIC (μg/L)	lodine intake	lodine status
School-aged	<20	Insufficient	Severe iodine deficiency
children (6 years and up)	20 - 49	Insufficient	Moderate iodine deficiency
	50 - 99	Insufficient	Mild iodine deficiency
	100 - 199	Adequate	Adequate iodine nutrition
	200 - 299	Above requirements	Slight risk of more than adequate iodine intake
	≥300	Excessive*	Risk of adverse health consequences
During	<150	Insufficient	
pregnancy	150 - 249	Adequate	
	250 - 499	Above requirements	
	≥500	Excessive*	
During	<100	Insufficient	>
lactation	≥100	Adequate	

^{*} In this context, the term 'excessive' denotes an intake in excess of that required for prevention and control of iodine deficiency. It is not synonomyous with an 'Upper Level' at which there is an increased risk of toxicological effects.

The WHO epidemiologic criteria (WHO 2013) use UIC as an approximation of 24-hour UIE on the basis that school-age children (6 to 12 years) produce 1 litre of urine per day. This enables UIC (μ g/L) and UIE (μ g/day) measures to be used interchangeably, despite their differing denominators (UK SACN 2014). However, this equivalency only applies where daily urinary output is equal to 1L/day.

It has previously been suggested that urine output for adults and older children may be closer to 1.5 L/ day (UK SACN, 2014). However, more recently a systematic review of urinary output among children and adolescents found that output in children aged 2 to 12 years was below 1L/day, undermining the assumption of equivalency between UIC and UIE in this age group (Beckford et al 2019). This raises the potential for iodine intake to be misclassified based on UIC. Similarly, a recent systematic review in adults estimated daily urinary volume at 1.77 L/day - greater than the 1.5 L/day upon which previous iodine NRVs have been developed (Noble et al 2024). Estimates of intake based on single spot urine may be inaccurate and should be interpreted with caution (Mackerras 2011).

Assuming 90% excretion and daily urinary output of 1.5 litres, iodine intake can be estimated based on UIC using the formula:

Daily iodine intake ($\mu g/day$) = UIC ($\mu g/L$) x 0.0235 x bodyweight (kg)

Using this approach, a daily intake of 150 μ g is derived from median UIC of 100 μ g/L in adults.

As an alternative approach, intake can be estimated by adjusting for daily urinary volume and absorption using the formula:

Daily iodine intake (μ g/day) = UIC (μ g/L) x urinary volume (Litres) ÷absorption rate (assumed 90-92% unless otherwise indicated)

Creatinine: Iodine Ratio (I:Cr)

The iodine-to-creatinine ratio (I:Cr) - measured in $\mu g/g$ - has been proposed as a method for estimating individual iodine status from UIC, by adjusting for urinary dilution and variations in daily urinary volume (Oblak et al 2024). However, this measure is sensitive to the effects of sex, age, diet and renal function and it has therefore been suggested that estimates should adjust for age and sex when calculating I:Cr for urinary iodine measures (Konno et al 1993, Rasmussen et al 1999, Knudsen et al 2000). Furthermore, in its 2012 report on biochemical indicators of nutrition, the US CDC found that Creatinine-adjusted UIC was no more reliable than UIC alone (CDC, 2012).

Breast milk iodine concentration during lactation

A 2022 systematic review examined the relationship between breast milk iodine concentration (BMIC) and urinary iodine concentration. This review aimed to evaluate the potential use of BMIC as a biomarker for iodine status during lactation and in breastfed children <2 years of age (Liu et al 2022). Although the authors concluded that BMIC shows promise as a potential biomarker of iodine status, the body of evidence is not sufficiently robust to derive an optimal BMIC or to inform thresholds for sufficiency.

Secondary biomarkers of status

A limitation of urinary iodine measures is that they reflect more recent dietary intake. A range of thyroid function and disease parameters are used to estimate longer-term status. However, these measures may be restricted in their sensitivity for identifying mild iodine deficiency (Leung, 2019). Although serum levels of thyroid hormones primarily reflect thyroid function, these can be used as indirect markers of iodine status.

Thyroid hormones

Thyroglobulin (Tg) is a protein produced by thyroid follicular cells and is the main precursor for synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine (T4). Elevated Tg is a sensitive indicator of long-term population status and has been suggested as a potential biomarker of excess (Gunnarsdóttir and Brantsæter 2023). However, validated reference values in adults have not been established (Ma et al 2017, Ma et al 2018) and its validity as an individual marker is uncertain, due to significant variability in day-to-day measures (Farebrother et al 2018). A 2020 systematic review examining the suitability of Tg as a biomarker of status during pregnancy found that Tg may be a sensitive indicator of iodine deficiency where median UIC is less than 100 μ g/L.

However, the sensitivity of Tg for detecting mild population deficiency in the MUIC range of 100-150 μ g/L during pregnancy remains unclear (Nazeri et al. 2020a)

In children and adolescents, serum thyroid stimulating hormone (TSH) and thyroglobulin (Tg) are both useful biomarkers, with normal TSH typically within the range 0.1- 5 mU/L and a serum Tg below 10 μ g/L indicative of adequacy (Vejbjerg et al., 2009; Ristić-Medić et al., 2009, EFSA 2014). Free Triiodothyronine (FT3) and Free Thyroxine (FT4) lack sensitivity and are not reliable biomarkers of iodine status.

Neonatal TSH

WHO guidelines recommend the use of neonatal TSH screening at 3 to 4 days post-birth as an indicator of population status. Population sufficiency is indicated when newborn TSH levels >5 mU/L are observed in in less than 3 % of those sampled (WHO 2007).

However, it has been suggested that this approach may not be sufficiently reliable for classifying population status (Li and Eastman 2011). However, a 2019 systematic review found better agreement between neonatal TSH and goitre prevalence, than when MUIC was compared with goitre prevalence (Wassie et al 2019). The authors emphasised the importance of adhering to WHO-recommended sampling - within 3 to 4 days of birth - with sampling outside this period (including from cord blood) found to be unreliable.

Elevated neonatal TSH is also used as an indicator of iodine deficiency in newborns and may be informative regarding maternal iodine status during pregnancy. Beyond the neonatal period, TSH is not a sensitive indicator of individual deficiency due to the wide range of values within the limits of normal function.

Goitre prevalence

Goitre prevalence in children aged 6 to 12 years is an established measure of long-term population iodine status, with prevalence >5% indicative of population-level deficiency (WHO 2007). However, it should be noted that thyroid volume can take months or even years to return to normal after deficiency is corrected. Consequently, goitre prevalence may be an unreliable measure, in populations where deficiency has been recently corrected, and thyroid volumes have not yet returned to normal volume.

Furthermore, thyroid volume is only a reliable indicator of goitre prevalence in areas of moderate or severe deficiency, and as such these measures are not sensitive markers of mild iodine deficiency (NNR 2023).

When combined with urinary iodine measures, goitre prevalence can be used to infer a level of intake sufficient for preventing abnormal thyroid volume and goitre in most of the population. That is, by measuring median urinary iodine associated with goitre prevalence <5% within a given population. When this approach is used, the primary source of uncertainty arises from back-converting urinary iodine measures (expressed is $\mu g/L$ or $\mu g/day$) into a daily iodine intake (EFSA 2014).

Current recommendations and international comparisons

The current Australian and New Zealand Nutrient Reference Values (2006 NRVs) for iodine were developed in 2006 and adapted from values published by the US Institute of Medicine in 2001. Subsequently, several international jurisdictions have published updated NRVs for iodine. Although there is variation in local context - including population iodine status and dietary patterns - and in the age groupings used across jurisdictions, NRVs developed using comparable approaches are informative for comparison purposes. In particular, where reference values have been updated to reflect contemporary evidence review methods and recently published research.

Nutritional adequacy recommendations

Basis for current recommendations

The 2006 NRVs specify an Estimated Average Requirement (EAR) and Recommended Dietary Intake (RDI) for each population and age group (see Table 1). The basis for deriving each of these values is presented below.

Adults

Values for adults were based on studies reporting average thyroid iodine accumulation and turnover between 91.2 and 96.5 μ g/day in euthyroid adults (Fisher and Oddie 1969a, Fisher and Oddie 1969b). Values were rounded to 100 μ g/day to reflect New Zealand data on urinary iodide to thyroid volume (Thomson et al 2001). The RDI was established applying a 20% co-efficient of variation (CV), being half of the 40% CV reported by Fisher and Oddie (1969a). This adjustment reflected the assumption that half of the variation observed by Fisher and Oddie (1969a) was due to the complexity of the experimental design and calculations used to estimate turnover (US IOM 2001).

Pregnancy

Values for pregnancy were based on adult requirements, adjusted to account for additional requirements during pregnancy. Daily fetal thyroid iodine uptake was estimated at 75 μ g/day based on 100% daily turnover of iodine in the newborn thyroid, and an estimated thyroid content of 50-100 μ g in newborns (Delange, 1989; Delange and Ermans 1991). Assuming an EAR of 95 μ g/day for non-pregnant women (based on the EAR identified by the US IOM), a preliminary EAR of 170 μ g/day during pregnancy was calculated. This estimate was reduced to 160 μ g/day in view of the following supportive evidence:

- a balance study which reported neutral balance among pregnant women with iodine intakes of around 160 μ g/day (Dworkin et al., 1966); and
- A. studies on the effect of iodine supplementation on maternal thyroid volume, with daily intakes of 250 to 280 $\mu g/day$ found to prevent goitre during pregnancy (Pedersen et al 1993), whereas intakes of 150 $\mu g/day$ were insufficient to prevent increased thyroid volume (Glinoer 1998).

The RDI during pregnancy was estimated at 220 $\mu g/day$, based on an EAR of 160 $\mu g/day$ and applying a 20% CV.

Lactation

The EAR was set at 190 $\mu g/day$, based on the adult EAR (100 $\mu g/day$) plus replacement of iodine secreted in breast milk estimated at 90 $\mu g/day$. The replacement value of 90 $\mu g/day$ was lower than the 114 $\mu g/day$ estimated by the US IOM (based on Gushurst et al 1984) as the panel considered a broader range of studies on the topic (Delange e al 1984, Gushurst et al 1984, FAO:WHO 2001, Johnson et al 1990). The RDI was set at 270 $\mu g/day$ assuming a CV of 20% for the EAR.

Children and adolescents

1 - 3 years of age

The EAR for children aged 1 to 3 years was based on a 4-day balance study in seven children aged 1.5 to 2.5 years (Ingenbleek and Malvaux 1974). Children were previously malnourished but had been nutritionally rehabilitated. Mean average iodine balance was positive (19 μ g/day) with a median iodine intake of 63.5 μ g/day. This estimate was favoured over an estimate of 36 μ g/day obtained when adult recommendations were extrapolated based on body weight. The RDI was calculated by applying a 20% CV.

4 - 8 years of age

The EAR for children aged 4 to 8 years was derived from a 1969 balance study, based on the results from two 8 year-old children with intakes of 20 or 40 μ g/day, which resulted in negative balance (-23 or -26 μ g/day respectively) (Malvaux et al. 1969). On this basis, the EAR was set to 65 μ g/day and the corresponding RDI established at 90 μ g/day using a 20% CV.

9 - 13 years of age

Several studies were considered when setting the EAR and RDI for children aged 9 to 13 years, although these resulted in substantially different estimates of requirements. Data from a study on goitre prevalence in European children aged 6 to 15 years (Delange et al 1997) suggested an RDI of 125 μ g/day, and assuming median urine volume of 1.15L/day and 92% excretion (US IOM, 2001). Conversely, balance data from a subset (N=16) of participants aged 9 to 13 years in a 1969 balance study were also examined. Average iodine intake was 31 μ g/day and average balance was -24 μ g/day, suggesting an EAR of approximately 55 μ g/day (Malveaux et al 1969).

Ultimately, the EAR for 9 -13 year-olds was developed by extrapolating values from adults - using metabolic body weight ratios - to arrive at an EAR of 75 μ g/day and RDI of 120 μ g/day established using a 20% CV.

14-18 years of age

In setting the EAR for children and adolescents aged 14 to 18 years, it was noted that negative balance (-24 $\mu g/day$) was found in a subset of participants (N=10) aged 14 to 18 with an average daily intake of 34 μg (Malvaux et al. 1969). This resulted in a calculated average requirement of 58 $\mu g/day$. However, the EAR in this age group was instead derived by extrapolating values from adults using metabolic weight ratios, which yielded an estimated EAR of 95 $\mu g/day$. RDI was established at 150 $\mu g/day$ based on a 20% CV.

Table 3. Estimated Average Requirement and Recommended Dietary Intake, or equivalent, by population and jurisdiction

	population	and ju	risaicti	OH							
Population group	Age range (years)	US-Ca (IOM			K 91)*		alia-NZ (2006)		2007)*	Germ Aus Switze D-A (20	erland -CH
		EAR	RDI	EAR	RDI	EAR	RDI	EAR	RDI	EAR	RDI
		(µg/d)	(μg/d	(μg/d)	(µg/d)	(μg/d)	(µg/d)	(µg/d)	(µg/d)	(µg/d)	(µg/d)
)								
Adults	19+	95	150	NS	140	100	150	-	150	-	180¹
											200^{2}
Pregnancy	14-50	160	220	NS	140	160	220	-	250^	-	230
Lactation	14-50	209	290	NS	140	190	270	-	250	-	260
Children/	14-18	95	150	NS	130-140	95	150	-	250	-	200 ³
adolescents	9-13	73	120	NS	1104	75	120	-	150 ⁵	-	180 ⁶
	4-8	65	90	NS	100 ⁷	65	90	-	1208	-	120-
											140 ⁹
	1-3	65	90	NS	70	65	90	-	9010	-	100

^{*}Variation in age ranges across jurisdictions: ¹ 51+ years; ² 19-51 years; ³ 13-17 years; ⁴ 7-10 years; ⁵ 13-18 years; ⁶ 10-12 years; ⁷ 4-6 years; ⁸ 6-12 years; ⁹ 4-9 years; ¹⁰ 1-5 years

Comparison with international values

In contrast to the approach adopted by the US IOM (2001) and 2006 NRVs (NHMRC, 2006), the 2014 European Food Safety Authority (EFSA) review of nutrient requirements determined that there was insufficient evidence to derive an EAR and associated RDI³. This decision reflected concerns about:

- the generalisability of studies on thyroid iodine accumulation to the European context, in view of the high UIE reported in those studies (410 and 280 µg/day respectively)
- the accuracy of balance studies for quantifying intake and losses, including that observed requirements under 'balance' conditions may reflect adaptive changes rather than a true 'steady state', if studies are of inadequate duration; and
- that observed 'balance' may reflect requirements that only apply in a narrow range of contexts.

Instead, EFSA established an Adequate Intake (AI) for iodine, with recommendations based on a large European study in school-aged children that reported low goitre prevalence (<5%) with urinary iodine concentrations above 100 μ g/L (Delange et al 1997; EFSA, 2014).

 $^{^3}$ EFSA uses the terms Average Requirement (AR) and Population Reference Intake (PRI) instead of EAR and RDI.

The 2023 Nordic Nutrition Recommendations (NNR) also replaced the previous 2012 EAR-equivalent with a provisional AR⁴ and AI instead, with recommendations based on goitre prevalence per the EFSA 2014 recommendations (Blomhoff et al. 2023).

Despite differences in both the type of nutritional adequacy NRVs developed (EAR + RDI vs AI), and the underpinning evidence used to derive these values (balance studies vs thyroid volume/goitre prevalence), there is substantial agreement between the 2006 NRVs and subsequent AI values set by EFSA (2014) and NNR (2023), as shown in Table 1 and Table 2.

Table 4. Adequate intake or equivalent, by population and jurisdiction

Population group	Age range (years)	Nordic Nutrition Recommendations (NNR 2023)		European Commission (EFSA 2014)
		Al (μg/d)	Provisional AR (μg/d)	Al (μg/d)
Adults	18+	150	120	150
Pregnancy	NS	200	160	200
Lactation	NS	200	160	200
Children/	15-17	120 (F) 140 (M)	100 (F) 110 (M)	130
adolescents	11-14	120 (F) 130 (M)	100	120
	7-10	100	80	90
	4-6	100	80	90
	1-3	100	80	90

Upper Levels

Basis for current recommendations

The 2006 NRVs also specify Upper Levels (UL) for iodine for each population group. The UL in adults was derived from data for challenged thyroid function (measured as elevated TSH concentrations). A LOAEL of 1700 μ g/day was set, based on two studies of supplemental iodine which showed increased TSH (over baseline) at 1,800 μ g/day and 1,700 μ g/day (Gardner et al. 1988, Paul et al. 1988). Both studies were small, examining varying iodine doses in 30 and 32 participants respectively.

NHMRC (2006) applied an uncertainty factor of 1.5 to arrive at a rounded adult UL of 1100 µg/day.

The adult UL was also adopted for pregnancy and lactation on the assumption that there was no evidence of increased sensitivity in these populations. Values for children and adolescents were extrapolated from adult ULs, based on metabolic body weight.

The provisional AR was derived from the AI, calculated by multiplying AI by a factor of 0.8(NNR 2023).

⁴ The provisional AR is defined as: The average daily nutrient intake level that is suggested to meet the requirements of half of the individuals in a particular life-stage group. The provisional AR, which is an approximation of AR, has larger uncertainty than AR.

Comparison with international values

Adults

There is substantial variation across international ULs, most notably between the current (2006) and US/Canadian UL of 1,100 $\mu g/day$ and the UL of 600 $\mu g/day$ established by the European Commission (EFSA 2002) and 2023 Nordic Nutrition Recommendations (Blomhoff et al. 2023). However, these ULs have all been developed based on the same end point data, and using a LOAEL of 1700 $\mu g/day$. The variation in recommendations is explained by the application of differing uncertainty factors by each jurisdiction. For example, NHMRC (2006), the US and Canada (US IOM 2001) applied an uncertainty factor of 1.5 to arrive at a rounded adult UL of 1100 $\mu g/day$; the European Commission applied an uncertainty factor of 3 to arrive at its UL of 600 $\mu g/day$. This lower value was adopted by the 2012 Nordic Nutrition Recommendations and retained in the recent 2023 update.

A comparison of ULs across jurisdictions is presented in Table 5.

The WHO specifies upper limits that are "probably safe" in its 2004 recommended vitamin and mineral requirements for human nutrition (WHO 2004). The ULs provided are in the units of $\mu g/kg/day$ and are in the order of 15 to 20 times higher than recommended intakes, reflecting the high tolerance of healthy, iodine-replete, euthyroid adults to high doses of iodine. These values have been transposed to $\mu g/day$ using Australian and New Zealand reference weights (based on 'ideal' body weight) in Table 6, to facilitate comparison with other international values.

Pregnancy

The WHO epidemiological criteria for assessing iodine nutrition based on median UIC in pregnant women defines UIC > 500 μ g/L as an excess intake (WHO 2007). However, in this context the WHO is referring to intakes that are "in excess of the amount required to prevent and control iodine deficiency" and accordingly, the 500 μ g/L threshold should not be interpreted as describing an UL. The WHO Upper Level recommendations use the units of μ g/kg/day, with UL recommendations during pregnancy or lactation equating to 2800 μ g/day for a 70 kilogram adult.

In 2022, the UK Food Standards Agency's (FSA) Committee on Toxicity examined the effects of excess iodine intake on maternal and child health. It found there was insufficient evidence to inform a risk assessment. The Committee concluded there were no toxicological concerns with iodine exposure in the general population - which was found to be within recommended limits - although individuals with diets high in seafood may be at risk of toxicological effects (UK FSA COT 2022).

Table 5. Upper Levels, by population and jurisdiction

Population group		US-Canada (IOM 2001)	UK (1991)	Australia & NZ (NHMRC 2006)	Nordic Countries (NNR 2023)	European Commission (2002)*	Germany- Austria- Switzerland D-A-CH (2015)
		UL (a) (d)	UL	UL (****/*IX	UL (*****(*!)	UL (a) (d)	UL (a.a. (al)
		(μg/d)	(µg/d)	(µg/d)	(μg/d)	(µg/d)	(μg/d)
Adults	19+	1100	1000	1100	600	600	500^
Pregnancy	19-50	1100	-	1100	600	600	
eg.la.ley	14-18	900	-	900	600	600	
Lactation	19-50	1100	-	1100	600	600	
	14-18	900	-	900	600	600	
Children/	14-18	900	-	900	-	450-500 ¹	
adolescents	9-13	600	-	600	-	300 ²	
adolescents	4-8	300	-	300	-	250 ⁴	
	1-3	200	-	200	_	200	

 $^{^{*}}$ Variation in age ranges across jurisdictions: 1 13-17 yrs; 2 7-10 yrs; 3 7-12 years; 4 4-6 yrs; 5 up to 6 years

Table 6. WHO Upper Limits by group, converted to $\mu g/day$ based on 2006 NRVs reference weights

Population group	Age range (years)	WHO UL (2007) (μg/kg/day)	Reference Weights 2006 NRVs (kg)	-WHO ULs based on ANZ weights (µg/d)
Adults	19+	30	70	2100
Pregnancy	Not specified	40	70	2800
Lactation	Not specified	40	70	2800
Children/	14-18	30	60.5^	1815
adolescents	9-13	50	40	2000
	4-8	50	22	1100
	1-3	50	13	650

^{^15-17} years age grouping for 2006 NRVs. 18-64 years. Value presented is average of values for males (64kg) and females (57kg)

 $^{^{\}circ}$ Due to longstanding deficiency and prevalence of thyroid abnormalities within the population, in 2015 the D-A-CH adopted a UL of 500µg/day for adults.

Australian and New Zealand context

Population status and intakes

Australia

This section reports the following data from national surveys:

- Median UIC data from the 2022-24 Australian National Health Measures Survey (NHMS; ABS, 2025a) and the 2011-12 Australian National Health Measures Survey (NHMS; ABS, 2013) - shown in Table 7.
- Dietary intake data from the 2023 National Nutrition and Physical Activity Survey (NNAPAS; ABS, 2025c), shown in Table 8. At the time of writing, the 2023 NNPAS data release does not report the proportion of the population with intakes less than the EAR, nor does it report the confidence interval range for intakes, and consequently this data from the Australian Health Survey 2011-13 (ABS, 2015) is shown in Table 9.

In late 2009, Australia mandated the use of iodised salt in bread, to address the re-emergence of iodine deficiency. Median UIC findings from the 2011-12 National Health Measures Survey (NHMS) confirmed that median UIC had increased across all population groups following fortification, with values well within the WHO range for iodine sufficiency (ABS, 2013) except in pregnant and lactating women where concerns about population deficiency remain (AIHW, 2016). More recent summary data from the 2022-24 NHMS suggests that the population remains sufficient, although median UIC in adults aged 18 years and over decreased from 124 μ g/L in 2011-12 to 112 μ g/L.

In contrast to median UIC data, comparison of dietary intake data from the NNAPAS suggests that iodine intake has increased across all populations between 2011 and 2023. However, the ABS advises that this comparison should be interpreted with caution, owing to changes in data processing across survey periods.

Adults

2022-24 National Health Measures Survey

In 2022-23, the adult population (aged 18 years and over) was found to be iodine sufficient based on WHO criteria (WHO 2007), with a median UIC of 112 μ g/L and 17.4% of the population with UIC <50 μ g/L. Intakes in males were higher than in females (123 μ g/L vs 101 μ g/L), with values for women marginally within the 100 μ g/L range of sufficiency.

2011-12 National Health Measures Survey

In 2011-12, the population median UIC for Australian adults was 124.0, with 12.8% of those sampled with a UIC <50 μ g/L - well within WHO recommended ranges for population sufficiency. Intakes in men were significantly higher than for women (131 μ g/L vs 118 μ g/L), with deficiency also more prevalent in women than men (15.8% of women vs 9.6% of men with UIC <50 μ g/L) (ABS, 2013).

lodine status of adults also varied geographically across Australia, with median UIC highest in adults living in Western Australia (157.4 μ g/L) and lowest in those residing in Tasmania (108.0 μ g/L). Similarly - and despite the early introduction of voluntary fortification in 2001 and

mandatory fortification in 2009 - Tasmania also had the highest proportion of deficiency (UIC <50 μ g/L), affecting 14.9% of those measured.

Regional variation in iodine status has also been observed, with those residing in inner regional Australia having lower median UIC (114.0 μ g/L) and more likely to be deficient (15.4%) compared with those in major cities (median UIC 128.0 μ g/L; 11.9% deficient).

Children and adolescents

2022-24 National Health Measures Survey

The 2022-24 NHMS reported that children aged 5 to 17 years were iodine-sufficient, with a median UIC of 171 μ g/L and only 8% with UIC <50 μ g/L. Urinary iodine measures were highest in children aged 5 to 11 years (median UIC 185 μ g/L for males; 188 μ g/L for females).

2011-12 National Health Measures Survey

Similarly to the 2022-24 NHMS, 2011-12 data found that median UIC was highest among young children aged 5 to 11 years (176.7 μ g/L), followed by people aged 12 to 17 year (149.0 μ g/L). These groups also had the lowest rates of deficiency, with only 5.9% of young children with UIC < 50 μ g/L.

Similarly to adults, iodine status in children varied by State with median UIC highest in Western Australia and lowest in South Australia, although data are only reported for children aged 8 to 10 years and do not include Tasmania the Northern Territory or Australian Capital Territory (ABS, 2013). Notably, a median UIC of 261.30 μ g/L was observed in children aged 8 to 10 years in Western Australia - well above the recommended dietary intakes of 90 and 120 μ g/d for this age range.

A Food Standards Australia New Zealand (FSANZ) analysis undertaken post-fortification found that children aged 2 to 3 years were most likely to have excessive intakes, with 20% estimated to have intakes above the UL post-fortification, compared with 7% pre-fortification (FSANZ 2016). Despite this significant proportion, the report notes that evidence suggests that these intakes are unlikely to have adverse health effects, in view of the safety margins used to derive an UL and given the reversible nature of the clinical end point on which ULs are based (sub-clinical hypothyroidism). Furthermore, the period of excessive intake is expected to be transient, with less than 1% of children expected to exceed the UL at the age of 4 years.

Aboriginal and Torres Strait Islander populations

Data from the 2011-12 National Aboriginal and Torres Strait Islander Health Measures Survey (NATSIHMS) reported higher median UIC for Aboriginal and Torres Strait Islander populations across all age groups - with the exception of young adults aged 18-24 years - compared with the median UIC of all Australians (AIHW, 2016). Although median UIC for Aboriginal and Torres Strait Islanders aged 18 - 24 years was slightly lower than that of all Australians (135 vs 138 μ g/L) it remained well within WHO recommended range for sufficiency.

More recently, a 2019 study compared iodine status among young adult participants in the Aboriginal Birth Cohort study with the non-Indigenous Top End Cohort prior to and post mandatory fortification (Singh et al 2019). While this study also found that median UIC had increased across all groups following mandatory fortification, it reported lower median UIC values than those of national surveys. For some groups - in particular Indigenous and non-Indigenous

Australians residing in remote areas, or pregnant women and those of child-bearing age - median UIC remained below the recommended 100 μ g/L threshold, indicating mild deficiency.

Pregnancy and lactation

2022-24 National Health Measures Survey (NHMS)

The currently available 2022-24 NHMS data do not report measures of UIC in pregnancy or lactation, although pregnant and breastfeeding women were not excluded from the survey. However, median UIC in females of child-bearing age (aged 16 to 44 years) was 101 μ g/L; marginally within the range for sufficiency in non-pregnant adults. However, 2022-24 NHMS data suggests mild population deficiency in females aged 25 to 34 years and 35 to 44 years, with median UIC of 87 μ g/L and 97 μ g/L respectively, and more than 20% of individuals with UIC <50 μ g/L in both age groups. Furthermore, the median UIC in females aged 16 to 44 years was well below the recommended 150 μ g/L for sufficiency during pregnancy.

2011-12 National Health Measures Survey (NHMS)

The 2011-12 NHMS reported median UIC for pregnant and breastfeeding women aged 16-44 years of 116 μ g/L and 103 μ g/L respectively (ABS, 2013). These values were lower than the median UIC for all Australian women of that age reported in the 2011-12 NHMS (121 μ g/L) and -while within the WHO criteria for adult sufficiency and for sufficiency during lactation - are indicative of population insufficiency during pregnancy (ABS, 2013, WHO 2013).

Table 7. Median UIC (μg/L) by age for Australia and New Zealand (Source: ABS, 2013; NZ MoH 2020)

	Australia (NHMS 2022-24)	Australia (NHMS 2011-12)	New Zealand (2014/15)	
Age groups (years)	Median UIC (μg/L) in males (M) and females (F)	Median UIC (μg/L)	Median UIC (μg/L)	
5-11	185 (M) 188 (F)	176.7		
12-17*	137 (M) 172 (F)	149.0	112*	
18-24*	134 (M) 109 (F)	138.2	112*	
25-34	122 (M) 87 (F)	124.0	104	
35-44	124 (M) 97(F)	122.0	102	
45-54	114 (M) 101 (F)	119.0	100	
55-64	126 (M) 100(F)	119.0	104	
65-74	130 (M) 104 (F)	125.0	98	
75 +	126 (M) 112 (F)	129.0	91	
*New Zealand data f	for ages 15-24 were aggr	egated in a single grou	p.	

Table 8. Intake (μg/day) by age for Australia (Source: ABS, 2025c, 2023 NNPAS)

	Australia (NNPAS 2023, ABS 2025c)					
Age groups (years)	Males Intake (μg/day) Mean	Females Intake (µg/day) Mean				
2 to under 5	152.1	142.8				
5 to under 12	176.2	164.8				
12 to under 18	220.2	160.5				
18 to under 30	194.2	144.6				
30 to under 50	197.3	160.0				
50 to under 65	199.6	158.2				
65 to under 75	190.9	167.1				
75+	193.1	164.6				

Table 9. Table 1 - Intake (μg/day) by age for Australia (Source: ABS, 2015, 2011-13 AHS)

		Australia							
		(AHS 2011-13, ABS 2015)							
		Males			Females				
Age groups (years)	Intake (μg/day) Mean (95% CI)	% less than EAR	% exceeding UL	Intake (µg/day) Mean (95% CI)	% less than EAR	% exceeding UL			
2-3	157 (100 - 222)	0.1%	12.9%	141 (88 - 202)	0.5%	5.6%			
4-8	164 (106 - 231)	0.1%	0.1%	148 (93 - 210)	0.3%	0%			
9-13	190 (111 - 285)	0.3%	0%	169 (102 - 247)	0.5%	0%			
14-18	205 (123 - 303)	0.8%	0%	153 (91 - 229)	6.4%	0%			
19-30	202 (120 - 299)	1.5%	0%	146 (86 - 218)	11.7%	0%			
31-50	200 (119 - 297)	1.6%	0%	152 (91 - 226)	9.0%	0%			
51-70	182 (106 - 274)	3.5%	0%	149 (89 - 221)	10.5%	0%			
71 and over	178 (103 - 270)	4.2%	0%	151 (91 - 224)	9.2%	0%			

A 2019 review of studies evaluating iodine status in pregnant and lactating women post-fortification found that mild deficiency remains an issue among the Australian population (Hurley et al 2019). Of the 7 studies identified, the majority (N=4) reported median UIC <150 μ g/L. Of the three studies that indicated iodine replete status (median UIC >150 μ g/L) two reported population sufficiency without use of an iodine supplement.

A 2016 study comparing breast milk iodine concentration (BMIC) in lactating women pre- and post- fortification (Huynh et al 2016) found a significant increase in both BMIC and the percentage with BMIC <100 μ g/L (the epidemiological threshold for adequacy). However, the percentage of women with BMIC <100 μ g/L was significantly lower with use of an iodine supplement during pregnancy, suggesting an ongoing role of iodine supplementation in Australian women during pregnancy - and potentially lactation - to ensure that intakes are sufficient.

These findings were echoed in a 2016 analysis of BMIC in 55 lactating women in Western Australia, which found that BMIC of most women indicated sufficiency. More than half of participants were taking an iodine supplement (57.4%), with supplementation associated with higher BMIC (Jorgensen et al 2016).

Sensitive or at-risk groups

Plant-forward diets

A recent pilot study examined median UIC in 57 women aged 18 to 50 years, comparing urinary iodine in those consuming a plant-based (vegan) diet with omnivorous diets (Whitbread et al 2021). Both groups had median UIC less than the 100 μ g/L threshold for population sufficiency, with median UIC in vegan women <50 μ g/L. Urinary iodine was significantly lower in vegan women compared with those who ate an omnivorous diet (44 μ g/L vs 64 μ g/L, p=0.04). This study suggests that women who eat a plant-based (vegan) diet in Australia may be at greater risk of iodine deficiency. The authors suggested that further research was warranted to explore potential iodine deficiency in Australian women, particularly in those of reproductive age.

Data also suggests that consumers of plant-based milks may also be at increased risk of iodine deficiency, with 13.7% of dietary iodine intake from milk (ABS, 2025c). A recent analysis of Australian plant-based milks found significantly lower levels of iodine compared with cows milk (Harmer et al 2025).

Ensuring that these groups achieve intakes aligned with recommendations is increasingly important, with growing interest in plant-forward diets with lower animal product consumption (Riverola et al. 2023).

Low bread intake

Recent national data suggests that bread consumption is in decline, with apparent consumption of breads and bread rolls 4.4g/day lower (down by 7.7%) in 2023-24 compared with 2018-19 data (ABS, 2025b). These findings are echoed by results from the 2023 NNPAS (ABS, 2025c), which reported bread and bread roll consumption of 33.9g/day for 2 - 17 year olds and 31.7g/day for adults aged 18 years and older. This is significantly lower than consumption reported in the 2011-12 NNPAS (ABS, 2015) of 66.8g/day in 2 - 18 year olds and 69.8g/day in adults aged 19+ years. ⁵ This downward trend in consumption patterns may have implications for the success of Australia's mandatory iodine fortification program.

⁵ It should be noted that the 2023 and 2011-12 applied differing age groupings for children and adults and the groups are therefore not directly comparable.

Socioeconomic status

A 2016 study examining BMIC in 55 lactating women in Western Australia found a significant, negative correlation between low household income (<A\$50,000) and iodine supplement usage (Jorgensen et al 2016). Several studies have suggested that supplementation is critical for ensuring maternal iodine requirements are met, even with iodine fortification in Australia. This finding suggests that mothers from low-income households may be at increased risk of deficiency, due to financial barriers to accessing supplementation.

New Zealand

As in Australia, mandatory iodine fortification was introduced in New Zealand in 2009. Comparison between the 2008/09 and 2014/15 New Zealand Health Surveys (NZHS) found that iodine levels for all ages, genders and ethnic groups had almost doubled following the introduction of fortification (NZ MoH 2020). At the time of writing, data from 2014/15 NZHS are the most up to date national data on iodine status and intakes available for New Zealand. Available data are presented in Table 7.

Adults

The 2014/15 NZHS found that the median UIC for all adults was 103 μ g/L - marginally above the threshold for sufficiency of 100 μ g/L (NZ MoH, 2020). One in five (20.3%) of those surveyed had UIC <50 μ g/L, slightly above ICCIDD recommended threshold of 20% (WHO, 2007). However, this value represents a marked decrease from the 2008/09 survey, which found that 46.8% of adults had UIC <50 μ g/L and almost half (48.3%) had UIC <100 μ g/L. The ICCIDD recommends that no more than 50% of the population have UIC in this range (WHO, 2007).

Median UIC varied by gender, with men recording values >100 μ g/L across all ages and ethnic groups. In contrast, median UIC for women remained below the WHO threshold for sufficiency at 93 μ g/L, with only those women aged 15-24 years or of Māori, Pacific and Asian ethnicities reporting concentrations >100 μ g/L (NZ MoH, 2020).

These findings were echoed by a 2014 study examining the iodine status of 309 residential aged-care residents in New Zealand, aged 65 to 107 years (Miller et al 2016). Overall, the population was mildly deficient with median UIC of 72 μ g/L, and 29% of those analysed with a UIC <50 μ g/L. A 2012 study in also reported similar results, with median UIC of 73 μ g/L observed in 301 New Zealand adults aged 18 to 64 (Edmonds et al 2016). Although median UIC was lower than the recommended WHO threshold of 100 μ g/day, the authors noted that this parameter may not be appropriate for the population, in view of higher urinary volumes (2 litres per day). Instead, the authors suggested that median UIE of 127 μ g/day was indicative of population adequacy.

Children

The New Zealand National Children's Nutrition Survey examined measures of population (UIC) and individual (thyroid hormones) biomarkers of iodine status in a representative sample of 1,153 children aged 5 to 14 years (Skeaff et al 2012). Median UIC was 68 μ g/L and 29% of those sampled had UIC <50 μ g/L, indicating mild population iodine deficiency. Median Tg concentration also suggested mild deficiency, although mean TSH, FT4 and FT3 concentrations were all within normal reference ranges.

The impact of iodine fortification on status in children was evaluated in a 2011 sub-National study of 147 New Zealand schoolchildren aged 8 to 10 years (Skeaff & Lonsdale-Cooper, 2013). It reported that - following fortification - population urinary iodine was within recommended WHO ranges, with a median UIC of 113 μ g/L, and 12% of children with UIC <50 μ g/L and 39% with UIC <100 μ g/L. However, it noted that elevated thyroglobulin concentrations pointed to residual insufficiency in children and recommended further fortification be considered.

A 2015 study in 415 children aged 8 to 10 also reported population sufficiency, with median UIC of 116 μ g/L and 5% of those sampled having UIC <50 μ g/L (Jones et al 2016). However, more recently, a smaller study in 84 children aged 9 to 11 measured intake using dietary assessment methods and 24-hour urine. Intake based on UIE was estimated at 74 μ g/day; below the recommended dietary intake of 120 μ g/day for this age group (Peniamina et al 2019).

Māori

Median UIC reported in the 2014/15 NZHS indicated sufficient intakes in Māori men and women (117 μ g/L and 108 μ g/L respectively). For Māori women of childbearing age (16-44 years) the median UIC was 114 μ g/L.

Pregnancy and lactation

Only a small number of pregnant women (N=110) were included in the 2014/15 NZHS, with median UIC of 114 μ g/L (95% CI: 87, 141 μ g/L). This result is below the recommended 150 μ g/L and indicates that intakes are inadequate to meet increased requirements during pregnancy and lactation.

Although the overall median UIC in women of childbearing age (16-44 years) of 104 μ g/L indicates sufficiency for non-pregnant populations, this value is inadequate to meet the needs during pregnancy and lactation, with the WHO defining sufficiency as UIC >150 μ g/L. Furthermore, although iodine concentrations for Māori and Pacific women of childbearing age were within the recommended range (with median UIC of 114 μ g/L and 117 μ g/L respectively), the median UIC for those of European origin was 96 μ g/L, indicating deficiency in this group.

A New Zealand cohort study in 87 breastfeeding mother-infant pairs enrolled at 3 months postpartum and followed up to 12 months found that two thirds had no- or low- iodine knowledge (Jin et al 2021). This knowledge was a key predictor of iodine supplement consumption, which was associated with significantly higher median UIC compared with non-users of supplements.

Sensitive or at-risk groups

A recent study examined the iodine status of 46 mid-life women (40-63 years) living in New Zealand who consume less than 1 slice per day of iodine fortified bread (Finlayson 2019). It found that New Zealand women who avoid bread were at risk of inadequate dietary intakes, with median UIC of 49 μ g/L and UIE of 108 μ g/day, corresponding to an estimated median intake of 120 μ g/day; below the RDI of 150 μ g/day. Furthermore, 91% of those sampled had intakes below the EAR of 100 μ g/day.

Individuals with diets low in animal products are also expected to be at increased risk of deficiency, although there is conflicting data on the prevalence of plant-forward diets in New Zealand adults (Roy Morgan 2016; Kantar 2022, Greenwell et al 2023)

Key health outcomes of relevance to the Australian and New Zealand context

Both the Australian and New Zealand populations have a history of mild deficiency, with iodine fortification introduced in 2009 to address this public health issue. However, post-fortification studies show some subgroups may still be mildly deficient, particularly women of child-bearing age. Accordingly, the primary outcomes of relevance to the Australian and New Zealand context relate to iodine deficiency disorders and associated health effects. Although uncommon, a small proportion of the population will have usual dietary intakes exceeding the UL. It is therefore important to consider a range of health outcomes in the Australian and New Zealand context, when developing recommendations for nutritional adequacy and preventing excess, to optimise health. This includes outcomes relating to thyroid function, thyroid disease and neurocognitive development.

Thyroid disease in Australia and New Zealand

A study conducted between 1997 and 2000 (pre-fortification) identified the prevalence of thyroid disease in Australians aged 49 years or older at 14%, with 4% of those having an undiagnosed thyroid disorder (Empson et al 2007). These findings are echoed by a 2017 study in community living adults aged 49 years or older, which reported thyroid disease prevalence of 13.6%, approximately a third of whom had not been previously diagnosed (Hickman et al. 2017).

Thyroid autoimmunity has also been estimated to occur in 10-15% the Australian population, with women more commonly affected than men (O'Leary et al 2006). However, these estimates are based on data from a single locality in WA collected in 1981 and may not reflect the current population prevalence.

AIHW data suggest that thyroid cancers are strong contributors to increases in cancer incidence in those aged 30 to 49 years and affect women significantly more than men, with 70% of cases in women (AIHW, 2024). The age-adjusted incidence of thyroid cancer has increased significantly in Australia between 2000 and 2024, up from 8.5 to 22 cases per 100,000 females and from 3.3 to 10.0 cases per 100,000 males. However, the extent to which this represents a true increase in prevalence, or improved detection, is unclear. Improved detection is unlikely to account for the full increase observed (Pandeya et al 2015). There are multiple aetiologic factors that may be associated with this increase. Overweight and obesity - rather than iodine status - have been identified as significant contributors in the Australian context (Laaksonen et al 2021).

Despite this increase, age-adjusted mortality from thyroid cancer has remained stable, and thyroid cancer remains a high survival cancer. While males account for only 30% of cases, they are overrepresented in thyroid cancer mortality, with approximately 50% of deaths occurring in males (AIHW, 2024).

In New Zealand, thyroid cancer accounts for 1% of all cancer cases, with papillary thyroid cancer the dominant subtype, accounting for 80% of all thyroid cancers. Thyroid cancer has a low mortality burden in New Zealand, with a 98% survival rate (IARC 2022, Te Aho o Te Kahu, 2025). Some groups are at increased risk of thyroid cancer, including Pacific populations and women.

Although increasing incidence of congenital hypothyroidism was noted in New Zealand between 1993 and 2010, this change has been attributed to changes in the ethnic composition of the

population, with ethnic-specific indices of congenital hypothyroidism remaining stable (Albert et al 2012).

Beyond data on thyroid cancer, data on thyroid disease prevalence in New Zealand is largely from studies conducted prior to mandatory fortification (Thomson et al 2001, Gibbons et al 2008) and may not reflect current population prevalence.

Thyroid disorders and disease are prevalent within both the Australian and New Zealand populations. However, the aetiology of disease is multifactorial and is unlikely to be directly related to population iodine status. Nevertheless, the prevalence of thyroid diseases in Australia and New Zealand underscores the importance of developing NRVs based on the best available evidence, to optimise population health.

Studies have reported increased incidence of thyroid disease in Pacific and Māori populations compared with European populations (Meredith et al 2014, Tamatea et al 2020, Angelo et al 2020). Whilst aetiology has not been fully explored, determinants of health including stress and smoking history have been proposed as factors. A relationship between dietary sources of iodine, or iodine status and higher rates of thyrotoxicosis amongst Māori has not been proposed and is not indicated by the available population data which suggests median UIC in the sufficient range for Māori adults (NZ MoH, 2020). Nevertheless, the increased prevalence of thyrotoxicosis and thyroid eye disease (Tamatea et al 2020, Rapata et al 2023) in this population should be considered when making recommendations about iodine intakes to optimise thyroid function and health.

Child neurocognitive development

Supplementation during pregnancy

It is recommended that those who are pregnant and breastfeeding take a supplement containing 150 µg of daily iodine to ensure sufficient intake (NHMRC 2010). However, studies suggest that Australians' knowledge of - and adherence to - recommendations is low (El-mani et al 2014, Lucas et al 2014, Martin et al 2014, Malek et al 2016, Guess et al 2017, Hine et al 2018, Nolan et al 2022). Affordability of supplements has also been identified as a barrier to use (Nolan et al 2022). Furthermore, although iodine supplementation has been associated with adequate iodine status in pregnant Australian women (Hurley et al 2019), some studies suggest that supplementation may not address deficiency during pregnancy, unless commenced during pre-conception and continued throughout pregnancy (Hynes et al 2019).

Similar to findings in Australian women, a 2017 study reported low adherence to iodine supplementation recommendations during pregnancy and breastfeeding, with only 52% of 535 New Zealand women sampled adhering to recommendations (Reynolds and Skeaff 2017). This highlights the importance of ensuring iodine sufficiency in women of childbearing age, before they enter pregnancy.

Summary of Evidence

Physiological requirements

Balance and thyroid accumulation studies

Previous analysis of balance and thyroid accumulation studies suggests that neutral iodine balance is achieved at intakes of around 100 μ g/day, and not below 40 μ g/day (US IOM 2001, NHMRC 2006). However, studies of thyroid iodine accumulation may not be sufficiently reliable, with evidence suggesting that downregulation of thyroid iodine capture occurs as iodine intake increases (EFSA 2014, Bernard et al 1970; Hooper et al 1980; Tovar et al 1969; Follis et al 1962; Milakovic et al 2006). Thyroid accumulation studies upon which previous recommendations were based were conducted in populations with average urinary iodine excretion of 410 μ g/day and 280 μ g/day (Fisher and Oddie, 1969a, Fisher and Oddie, 1969b), suggestive of higher iodine intakes. These studies may underestimate requirements for nutritional adequacy.

EFSA (2014) have also raised concerns about the reliability of balance studies for estimating requirements, concluding that evidence from balance studies was insufficient to derive an NRV. In view of concerns about the suitability of balance studies for estimating requirements (see 'International comparisons' for a summary of concerns raised by EFSA) we sought balance studies published since 2014 that comprehensively measured iodine losses and included an adequate 'run in' period. One balance study was identified in adults (Tan 2019). Total iodine intake (including food, water and air) and excretion (urine, faeces, respiration and sweat) were measured in 25 young Chinese women (mean age 22 years) over a 4 week period. Median (IQR) UIC at baseline was 129.4 μg/L (102.1 - 149.1). Non-iodised salt was provided for the first 3 weeks of the intervention period, followed by 1 week with iodised salt provision. Analysis was restricted to the last 3 days of each 7 day intervention period, to account for the effects of preceding days' intake on UIC. Neutral balance was calculated by regression to zero, calculated to occur with iodine intakes of $110.5 \mu g/day$, equating to a RDI of $154.7 \mu g/day$, when a 20% co-efficient of variation (CV) was applied.

Despite the comprehensive approach to measuring losses, concerns remain about the duration of intervention, as the study included no run-in period and the dietary iodine intake varied between weeks 1 - 3 (period 1) and week 4 (period 2). The study was conducted in young female students and may be limited in generalisability to males and older adults within the Australian and New Zealand populations. Overall, while evidence from balance studies may provide supportive evidence for recommendations, the evidence remains insufficient for the purposes of deriving an NRV.

Requirements to support thyroid hormone synthesis and basal losses

Studies suggest that thyroid hormone synthesis (T3 and T4) in adult euthyroid subjects requires approximately 50 to 70 μg /day of bioavailable iodine (EFSA 2014, Nicoloff et al 1972, Chopra 1976, Kirkegaard et al 1990, Bregengard et al 1987, Cardoso and Rosenthal 1987, Faber et al 1988, Gavin et al 1977). This value represents the amount of iodine required for thyroid hormone production and does not account for unabsorbed iodine excreted via faeces, saliva, urine or sweat. EFSA

(2014) estimated these losses at approximately 60 μ g of iodine per day, although substantial uncertainty surrounds these estimates.

Allowing for an absorption efficiency of 92%, a required iodine intake of 130 μ g/day can be derived, using the factorial approach (EFSA 2014). This value can guide recommendations about daily iodine requirements in adults. However, it should not be used to establish an EAR due to uncertainty in the evidence for underlying inputs.

Requirements during pregnancy

Neutral balance during pregnancy

One balance study in 93 pregnant Chinese women examined iodine intakes from usual diet and measured excretion via urine and faeces (Chen et al 2023). The home-based study involved participants maintaining their usual diet and recording food intake using the duplicate portion method. Participants were also trained to collect urine and faecal samples for the duration of the study period. Estimated excretion via sweat was also accounted for based on body surface area and assuming sweat iodine concentration of $37\mu g/L$ based on BMI and (estimated) sweat. Simple linear regression was used to examine the association between intake and retention/excretion for the whole population, and for two subpopulations from areas with a lower (Hebei and Tianjin) and higher (Shandong) habitual intake. The authors noted that negative balance occurred with iodine intakes <150 $\mu g/day$, with positive balance observed with intakes >550 $\mu g/day$. Neutral balance occurred at intakes of $343\mu g/day$, although this figure reduced to $202\mu g/day$ (N=40) when the Shandong population with high habitual intake was excluded. This corresponded with a RDI of $280\mu g/day$ when applying a 20% CV.

This balance study overcame some limitations of classical iodine balance studies, with participants maintaining their typical diet, rather than implementing an experimental diet. This negated the requirement for adequate 'run in' periods, provided that participants did not alter their diets in response to the experimental conditions. Nevertheless, this approach also has some limitations, including that participants may alter their diet - or omit some foods from the duplicate portions - due to social desirability bias. Furthermore, while participants were trained in sample collection methodology, there is no information provided about adherence to these protocols. Consequently, the potential for sampling errors cannot be ruled out.

Similarly, the authors note that experimentally derived estimates of iodine balance have been found to increase with higher habitual iodine intake - potentially due to in increased iodine storage with high habitual intake. Consequently, the lower estimate of neutral balance ($202\mu g/day$) derived from 40 pregnant women in Tianjin and Hebei likely provides a more accurate estimate of minimum requirements for preventing deficiency. The intake at which neutral balance occurred was also higher in the third trimester compared with the first trimester, suggesting that iodine requirements may vary during pregnancy. Finally, the authors noted that missing data due to loss to follow-up or missed sample collection may have impacted findings, with only 55 of the 85 enrolled participants providing samples across all 7 days.

Additional requirements during pregnancy

lodine intake during pregnancy must be sufficient to support maternal thyroid function and fetal development. Production of maternal thyroid hormones increase during pregnancy, with studies

suggesting increased requirements of 40 to 60 μ g/day of exogenous thyroxine in fully T4-substituted patients, equating to approximately 20 - 29 μ g/day of iodine capture (EFSA 2014, Mandel et al 1990, Alexander et al 2004, Kaplan 1992, Yassa et al 2010). To meet this need, EFSA (2014) estimated additional thyroid iodine capture to be 25 μ g/day, equating to an increase of 44 μ g/day in iodine intake. Additional iodine is also required to support fetal development, including production of thyroid hormone for storage in the fetal thyroid, placenta and amniotic fluid, although these requirements are estimated to be very low, equating to 1μ g/day throughout pregnancy (EFSA 2014).

Requirements during lactation

Neutral balance in infants

A 2016 crossover study examining iodine balance in 11 healthy, formula-fed infants aged 2 to 5 months found that null balance occurred with intakes of 70µg/day (Dold et al 2016). However, it has been suggested that intakes should exceed that required for nutritional adequacy of infants during this life stage, to support accumulation of thyroidal iodine (Dror & Allen 2018).

Breast milk composition

The linear relationship between maternal iodine intake and breast milk iodine concentration (BMIC) in the range 50 - $400~\mu g/L$ (Azizi and Smyth, 2009) suggests that BMIC varies with maternal intake, rather than reflecting infant requirements. Nevertheless, an understanding of the levels of iodine excreted in breast milk is informative for determining intake requirements during lactation. In populations with adequate thyroid status and iodine intakes, EFSA (2014) iodinated Tg reserves mean that intake is not required to fully compensate for iodine losses in breast milk. Furthermore, in the Australian and New Zealand context - in which many women of childbearing age enter pregnancy in a state of mild deficiency - thyroidal iodine stores may be limited, and recommendations may need to approach full replacement to avoid deficiency states.

There is no established reference range for breast milk iodine concentration (BMIC), and significant variation in BMIC is noted both between populations, and over the course of lactation (Dror & Allen 2018). A systematic review of the iodine content in human breast milk found that - in the first 6 months of lactation - infant requirements would be met with BMIC of $150\mu g/L$ (Dror & Allen 2018). This finding supports the conclusions of EFSA (2014) which suggested that positive balance was reached with BMIC between 100 and 200 $\mu g/L$. Assuming an average breast milk volume of 0.8L / day, EFSA suggested that an additional 120 $\mu g/day$ of iodine would be required to achieve BMIC of $150\mu g/L$ (EFSA 2014).

Intake, status and health relationships

Intake and status

Goitre prevalence

We sought studies that measured median UIC (MUIC) and goitre prevalence, to identify MUIC levels associated with population sufficiency (goitre prevalence <5%) (WHO 2007). Substantial variation in the MUIC values and prevalence rates reported across studies was noted. This may be explained by a range of variables including differing geographic or nutrition contexts and related factors such as historical intakes (and delays in thyroid volume adjusting to adequacy where history of deficiency), methods for assessing goitre prevalence or thyroid volume, or failure to account for body surface area or age during thyroid volume assessment. For this reason, consideration was limited to studies conducted in regions comparable to the Australian or New Zealand context, for which robust measurement methods were reported. Studies in populations with UIC > 100 and a recent history of deficiency were not considered, given the prolonged duration required for thyroid volume to return to normal following chronic deficiency.

EFSA (2014) recommendations are based on a study in 7,599 European school children across 57 sites in 12 countries (Delange et al 1997). Participants were aged 6 to 17 years, including a broader range of age groups than the WHO recommended school aged children of 6 to 12 years old (WHO 2007). Total goitre prevalence was more than 5% even in countries with median UIC >100 μ g/L. However, when adjusted for age and body-surface area, the 5% prevalence cut off was associated with median UIC of between 60 and 70μ g/L. On this basis, the reference UIC value of 100μ g/L was selected from which AI values were derived.

In the Australian and New Zealand context, studies measuring median UIC and total goitre prevalence in children have reported mixed results. One study in 324 Australian children aged 5 to 13 years residing on the Central Coast of NSW reported a goitre prevalence of 0 with median UIC of 82 μ g/L (Guttikonda et al. 2003). During a similar time period, but in Melbourne, a study in 577 older school children aged 11 to 18 years reported a goitre prevalence of 19% with median UIC of 70μ g/L (McDonnell et al 2003).

Health outcomes in adults

Thyroid function

Iodine deficiency

lodine is an essential nutrient for thyroid hormone synthesis, and consequently severe deficiency affects thyroid hormone production ad thyroid function. However, the association between mild-to-moderate deficiency and thyroid function is less well-established. A recent systematic review explored this relationship, and found that comparative studies including individuals with both mild-to-moderate deficiency and adequate iodine status were lacking (Aarsland et al 2025). A total of 20 cross-sectional studies were identified that examined the effects of mild-to-moderate deficiency on thyroid function in the general adult population. Narrative synthesis was performed, with no consistent evidence of an effect reported across studies for the various thyroid function parameters reported (TSH, T3 and T4). These findings accorded with those of a 2020 analysis undertaken by the Norwegian Scientific Committee on Food and Environment (VKM, 2020) which

found insufficient evidence to determine whether mild-to-moderate iodine deficiency was associated with thyroid dysfunction in nonpregnant adults.

Excess intakes

Evidence scoping (see 'Appendix D - Outcomes from review of primary studies') identified five interventional studies in healthy, euthyroid adults that explored the effect of supplementation with iodine on status and thyroid function measures. However, studies were not combined in analysis due to significant heterogeneity in the setting, baseline and historical iodine status, and challenges with combining estimates of effect across varying urinary iodine measures. One study (Sang 2012) assessed a broad range of supplementation doses and reported both the supplementation amount and a measure of dietary iodine intake to enable calculation of overall iodine intakes. Data from this publication was analysed further to inform nutrient recommendations for iodine.

Sang et al. (2012) evaluated the effect of varying levels of supplementation (0 - 2000 μ g/day) on thyroid function parameters in 256 young, euthyroid Chinese adults aged 19 to 25 years. Participants with thyroid dysfunction, TPOAb, TGAb or low urinary iodine (<100 μ g/L) were excluded from participation.

The trial was performed in two phases, with the initial phase conducted in 2004 (iodine supplement >500 $\mu g/day$) and the second phase (iodine supplement 0-400 $\mu g/day$) in 2008. Participants were randomised to one of twelve interventions of iodine supplementation ranging from 0-2000 $\mu g/day$ for a four week period.

Dietary iodine intake was assessed with self-administered 24-hour recalls. Most participants obtained their food from cafeteria at the Tianjin Medical University, limiting the range of foods reported. Iodine content of reported foods consumed was calculated from Chinese food composition tables and informed by sampling 169 samples of 36 commonly reported foods as well as 15 drinking water and salt samples from University cafeterias. UIC from spot urine also measured at each timepoint.

Serum concentrations of FT₄, FT₃, and TSH were measured by automated chemiluminescent immunoassay, with reference ranges of: 11.5-23.5 pmol/L (FT₄); 3.5-615 pmol/L (FT₃) and 0.3- 5.0 mU/L (TSH). Baseline median UIC was 272 and 304 μ g/L in 2004 (phase I) and 2008 (phase II), respectively.

We extracted numerical data and plotted it to show associations between total iodine intake (supplementation and dietary sources) and measures of thyroid function and size with a locally weighted regression curve (or bar graph for incidence of subclinical hypothyroidism). The resulting graphs for other thyroid function measures are shown at Appendix B - Supplementary analyses, Sang et al (2012), with results for elevated TSH and subclinical hypothyroidism shown here. Measures of variance, either confidence intervals or $25^{th}/75^{th}$ percentiles, are shown as dashed lines around the regression line. The mean results for the twelve iodine interventions that inform the line are shown as grey circles.

Overall, the results from Sang et. al. (2012) demonstrate significant capacity for the thyroid to adapt to high intakes of iodine - including intakes substantially exceeding current UL recommendations. However, elevated TSH and increasing rates of subclinical hypothyroidism were observed with iodine intakes of 869 μ g/day or greater. At this level of intake, cases of subclinical hypothyroidism became significantly increased, and the upper bound of the 95% CI for TSH was elevated beyond the top of the reference range, which Sang et. al. (2012) stated to be 0.3-5.0 mU/L for the TSH assay used.

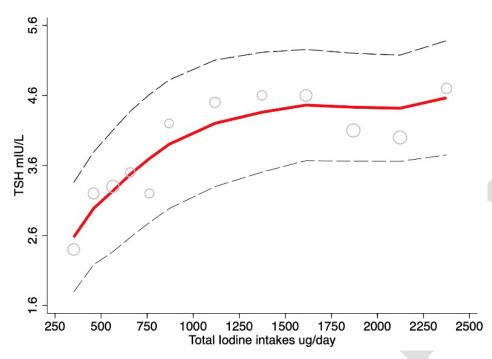


Figure 4. Mean TSH concentration with 95% confidence intervals and total lodine intakes from 256 euthyroid adults after being randomized to one of twelve lodine supplementation levels (0-2000ug) for four weeks.

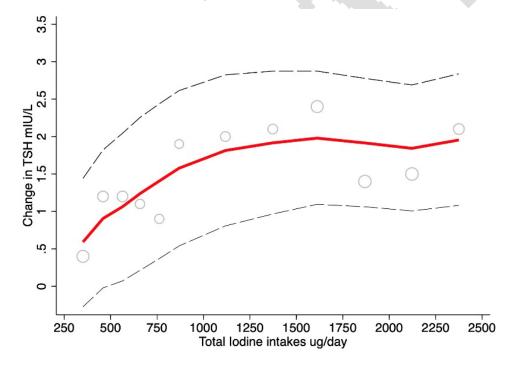


Figure 5. Change in TSH concentration with 95% confidence intervals and total lodine intakes over four weeks in 256 euthyroid adults randomized to one of twelve lodine supplementation levels (0-2000ug).

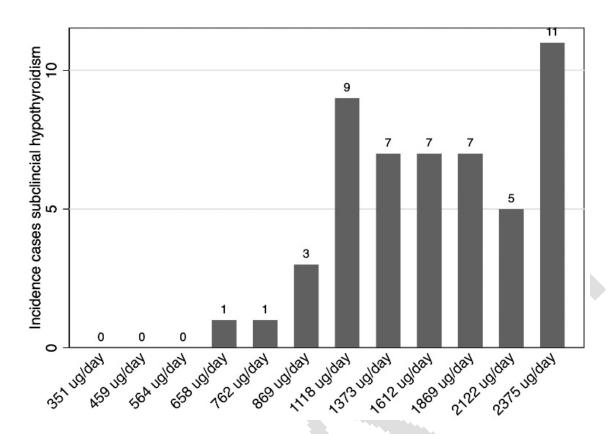


Figure 8. Incidence cases subclinical hypothyroidism by total Iodine intakes within four weeks in 256 euthyroid adults randomized to one of twelve Iodine supplementation levels (0-2000ug).

Thyroid disease

A 2017 systematic review and meta-analysis evaluating the relationship between iodine intake and thyroid disease (including thyroid cancer, nodules, hyperthyroidism and hypothyroidism) found that thyroid disease (any) prevalence was lowest when median UIC was between 100 - 299 μ g/L (Weng et al 2017).

Reviews examining the effect of iodine intake on thyroid cancer report mixed results. Cao et al (2017) sought case-control or cohort studies examining the effects of excess iodine intake (\geq 300 µg/day) or deficient intake (\leq 74mg/day) on odds of thyroid cancer. Only three studies were identified that reported iodine intake. Meta analysis of 2 studies found that odds of thyroid cancer were reduced with excess iodine intake (OR 0.74; 95% CI 0.60, 0.92; p=0.007). No significant effect was observed when for deficient intakes and thyroid cancer odds (OR 1.22; 95% CI 0.94, 1.58; p=0.13).

Weng et al (2017) identified four studies examining the prevalence of thyroid cancer among groups with low (UIC <100 μ g/L), medium (UIC 100 - 299 μ g/L), and high (UIC \geq 300 μ g/L) iodine groups. No significant difference in thyroid cancer prevalence was observed between the medium or high iodine groups (no studies were identified in low iodine groups).

Finally, Lee et al (2017) examined the relationship between iodine exposure and papillary thyroid carcinoma. Iodine exposure was determined using a range of measures including UIC, population

median UIC based on geographic location, regional salt iodization status, or dietary intake assessment. Overall, 16 studies evaluating iodine exposure and PTC odds were identified and pooled in meta-analysis. High iodine exposure was associated with increased odds of PTC (OR 1.418; 95% CI 1.054,1.909; p=0.02). However, subgroup analyses stratifying by iodine exposure measurement revealed inconsistent effects, with effects greatest when exposure was assessed by UIC or salt iodization. Consistent with the findings of Cao et al (2017), subgroup analyses revealed an inverse association between high iodine intake (based on dietary intake) and PTC (OR 0.842; 95% CI 0.608, 1.177; p=NR). Results from subgroup analysis were not statistically significant for any group.

Health outcomes during pregnancy and lactation

Maternal thyroid parameters

lodine deficiency

A recent systematic review (Aarsland et al 2025) examined the relationship between mild-to-moderate deficiency in pregnant and lactating women (Aarsland et al 2025). A total of 43 studies were identified, comprising 30 cross-sectional studies, 12 repeated cross-sectional studies, and 1 cohort study. Studies comparing thyroid function data in mild-to-moderately deficient and adequate groups were included in a meta-analysis. No significant differences were found between groups for TSH (8 studies), T3 (4 studies) or T4 (6 studies). Narrative synthesis across studies also found inconsistent results across the thyroid function parameters reported (TSH, T3, T4 and thyroid dysfunction).

Supplementation and maternal thyroid function

A 2024 systematic review identified 4 studies that examined the effect of iodine supplementation on thyroid measures in post-partum women (Nazeri et al 2024). Two of the four studies were conducted in New Zealand, with the remaining studies in Morocco and Germany. Iodine dose varied from 75 to 300 μ g /day oral iodine or a single 400 mg dose of iodised oil. No significant difference in thyroid measures was reported between iodine supplementation and control groups.

Excess intakes

Data from cross-sectional studies suggest that intakes >500 μ g/day during pregnancy may be associated with maternal thyroid dysfunction (Wu et al 2023, Sang et al 2012, Guo et al 2025). However, a systematic review on the effects of excess iodine on thyroid disease reported inconsistent findings across studies (Katigiri 2018). In many studies, iodine intake is estimated from urinary iodine concentration from spot urine, or UIE. These estimates rely on the assumption that the rate of iodine uptake is 90-92% based on observations under steady state conditions, which may not hold during pregnancy (see 'Urinary iodine excretion (UIE)' above).

Furthermore, pregnancy results in transient fluctuations in thyroid hormone levels - particularly early in gestation - and gestation-specific reference intervals for both UIC (Stilwell et al 2008) and thyroid measures (Gilbert et al 2008; Stricker et al 2007) should be adopted to account for such variation. Cross-sectional studies typically include women at varying gestational stages, which may lead to confounding of thyroid measures if analyses fail to account for gestational age (along with other important confounders). Finally, these studies rely on urinary iodine measures for estimating

iodine intake, including single spot urine analysis. This may lead to imprecise or inaccurate estimates of intake, because the rate of iodine uptake observed under steady state conditions (around 90-92%) may not hold, due to associated physical alterations during pregnancy (NNR 2023, Stilwell et al 2008). Consequently, the evidence for adverse effects with intakes >500 μ g/day during pregnancy is not compelling, for the purposes of establishing an UL for the Australian and New Zealand population.

The evidence for the relationship between maternal iodine status and thyroid function in lactating women is also limited. A 2024 systematic review of cross sectional and cohort studies found no significant differences in thyroid hormone levels (except for TSH) when comparing studies with median UIC < 50, 50-100, 100-200, and > 200 μ g/L in post-partum women (Nazeri et al 2024). However, although some studies were reported as being in lactating women (or inferred, through inclusion of BMIC data), it was unclear whether the review included both lactating and non-lactating post-partum women. Although median UIC >200 μ g/L was associated with significantly higher TSH concentrations compared with median UIC of 50-100 μ g/L or <50 μ g/L, TSH remained within the normal range. Similarly, no significant difference in thyroid measures were reported in post-partum women with BMIC <100 μ g/L compared with BMIC \geq 100 μ g/L, with measures within the normal ranges. However, these findings should be interpreted with caution, due to the methodological limitations of cross-sectional and cohort studies, significant heterogeneity across studies, wide variability in intakes and status (median UIC ranging from 23 to 504 μ g/L) and in the background nutrition setting of countries.

Child neurocognitive development

The association between severe iodine deficiency during pregnancy and global impairments in child cognitive development has long been established. More recently, concerns have been raised about the potential effects of mild iodine deficiency on neurocognition. Researchers have proposed the concept of 'Gestational Iodine Deficiency Processing Disorder (GIDPD)' as a nosological entity describing the more subtle effects of mild-to-moderate iodine deficiency (Hay et al 2019). The authors analysed four recent, robust, longitudinal studies in mild to moderate deficiency, to identify common patterns in the neurodevelopment of children born to mothers with mild-to-moderate gestational iodine deficiency. Key features identified included difficulties with processing speed and working memory, and difficulties with attention and response inhibition, manifesting as disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), learning disabilities and dyslexia. However, this study aimed to present a conceptual, phenomenological examination of the literature, and findings are not based on a systematic examination of the literature. The risk of bias of underlying studies, and quantitative synthesis of studies, was not undertaken.

Robust supportive evidence of consistent adverse neurocognitive effects associated with mild-to-moderate iodine deficiency are lacking. A recent systematic review exploring the association between maternal UIC, dietary iodine intake and child neurodevelopment identified 12 reports of 9 studies, comprising large sub-national or national cohorts (Monaghan 2021). While lower urinary iodine was associated with reduced performance across a range of neurodevelopmental measures in some studies, others found no significant effects. Where findings were significant, these were inconsistent across measures. The authors noted significant heterogeneity in the body of evidence, including in the cognitive outcomes measured.

It has also been suggested that excess habitual iodine intake may have adverse effects on child intellectual development, although evidence for this relationship is also limited (Li et al 2022).

Finally, a 2023 review examined the effects of iodine exposure during pregnancy on development of hearing in children (Dineva et al 2023). Four studies were identified comprising 1 RCT in 302 participants (low RoB) and 1 cohort study in 45 mother-child pairs (good quality)- both in mild to moderately deficient populations. No significant effects were observed, except for one measure (binaural integration) with deficiency associated with significantly lower scores for one ear but not the other, when compared with the sufficient group. Notably, the sample size was small (N= 15 participants in the sufficient group). Two case reports were also described, documenting excessively high iodine intake during pregnancy, with one case resulting in sensorineural hearing loss, whilst the other - treated with intra-amniotic levothyroxine during pregnancy - resulting in a euthyroid fetus with neonatal hearing screenings results within the normal range.

Supplementation and neurocognitive development

Several systematic reviews have examined the relationship between iodine supplementation during pregnancy and child neurocognitive development (Harding 2017, Dineva 2020, Machamba 2021, Nazeri 2021). Meta-analysis of the limited available evidence found that supplementation does not significantly improve neurocognitive development outcomes (Nazeri 2021). However, the authors suggested that these findings may reflect the late introduction of supplementation, along with variation in the degree of sufficiency prior to supplementation. These reviews generally concluded that there was a lack of high-quality evidence on the effect of supplementation on child neurocognitive development (Dineva 2020, Harding 2017).

The importance of pre-conception iodine supplementation has previously been noted, including in a 2019 Australian study which reported significantly higher UIC with pre-conception supplementation compared with those who commenced supplementation during pregnancy (Median UIC 196 (98 - 315) μ g/L vs 137.5 (82.5 - 233.5) μ g/L, p = 0.032) (Hynes 2019). Accordingly, although evidence suggests that child neurocognitive development outcomes may not improve with maternal iodine supplementation, this may relate to the timing at which supplementation occurred. Further research is required to characterise the relationship between maternal iodine intake and status, and child neurocognitive development in greater detail.

Australian and New Zealand studies

The Australian Gestational Iodine Cohort study followed children born to mothers during a period of mild population iodine deficiency who then grew up in an iodine replete environment. It found that children born to mothers with UIC <150 μ g/L had lower school performance scores (NAPLAN) across all tests at every time point (school year 3, 5, 7 and 9) compared with those with UIC \geq 150 μ g/L (Hynes et al 2013, Hynes et al 2017). When adjusted for confounders, these effects remained significant for spelling at all time points. Significantly higher scores were associated with UIC \geq 150 μ g/L up to year 9 for grammar, and in years 3 and 5 for reading.

A subset of this cohort were traced and assessed for language development using the Comprehensive Evaluation of Language Fundamentals (CELF-4) tool. Although the sample was small (N=46), adjusted regression modelling reported that children born to mothers with UIC <150 µg/L had reduced scores for language across all indices, however the differences were not statistically significant (Hynes 2017).

In contrast, a 2019 Australian study examining the association between mild iodine deficiency and child neurodevelopment at 18 months found no association between UIC <150 μ g/day during pregnancy and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) scores (Zhou et al 2019). The authors suggested that these differing findings may be explained by the failure of Hynes (2013) to adjust for key confounders including maternal IQ and home environment. The authors also note that this lack of association may also reflect the unsuitability of UIC as a marker of individual habitual intakes, rather than a lack of association between maternal intake and child neurocognitive development. Notably, although no association was observed between mild deficiency (MUIC <150 μ g/day) and child neurocognitive outcomes, analysis comparing intake - measured using a validated food frequency questionnaire - and Bayley-III scores reported lower cognitive, language and motor scores and higher odds of cognitive developmental delay with maternal intakes in the lowest and highest quartiles (<220 μ g/day or >390 μ g/day) compared with intakes between 220 μ g/day and 390 μ g/day (Q2 and Q3).

More recently, Sullivan et al (2024) published a re-analysis of 2013 data from an Australian cohort of 699 pregnant women and their offspring, with the aim of identifying the range of iodine intakes associated with optimal neurocognitive development. Analysis was restricted to participants for whom data on child neurocognitive assessment at 18 months were available, with models adjusted for maternal factors including IQ, age, parity, smoking, educational status, and quality of maternal caregiving. Maternal intake was measured using a validated dietary assessment questionnaire at 16 and 28 weeks gestation, with cognitive and language development measured at 18 months using the Bayley-III. A curvilinear relationship between iodine intake during pregnancy and cognitive (p=0.001) and language scores (p=0.004) was reported, with lower scores observed in the lowest and highest quartiles. This observation remained when multiple imputation analysis was performed to address missing data.

The authors reported that iodine intakes between 185 and 365 μ g/day during pregnancy were optimal for cognitive and language development.

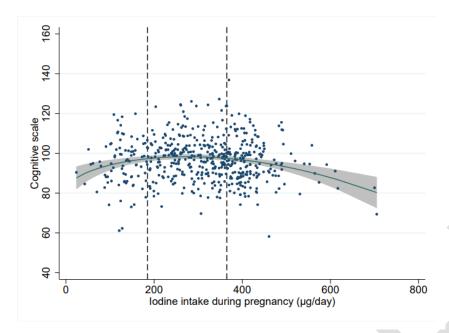


Figure 9. Figure from Sullivan et al (2024) showing curvilinear relationship between iodine intake during pregnancy and Bayley-III cognitive scores.

Shaded area is a 95% confidence interval around the fitted curve, whereas the vertical dashed lines are the proposed thresholds for iodine intake. Adjustments were made for maternal IQ, age, parity, smoking in pregnancy, years of education, and Home Screening Questionnaire score. Analysis based on n $\frac{1}{4}$ 524 participants with complete data.

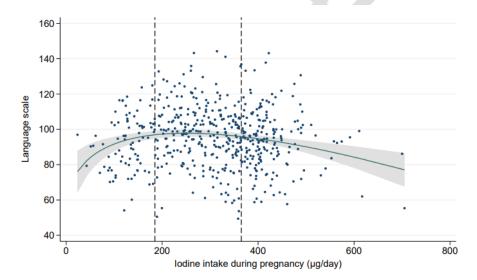


Figure 10. Figure from Sullivan et al (2024) showing curvilinear relationship between iodine intake during pregnancy and Bayley-III language scores. The shaded area represents the 95% confidence interval around the fitted curve, with vertical dashed lines showing the proposed thresholds for iodine intake. Based on N = 522 participants with complete data. (Sullivan et al 2024)

These findings underscore the need to ensure that women of childbearing age enter pregnancy in a state of sufficiency and that this status is maintained throughout pregnancy and lactation.

Although the available evidence for maternal intake during pregnancy and child neurocognitive development is insufficient to derive a NRV for pregnant women, it provides complementary data that can inform decision-making when setting iodine recommendations.

Birth outcomes

Several recent systematic reviews have examined the relationship between urinary iodine concentration and birth outcomes, including birth parameters (weight, length, head circumference) and pregnancy outcomes (pre-eclampsia, miscarriage, pre-term birth, still birth, infant mortality). These reviews compared the effect of various levels of urinary iodine including UIC \geq 150 µg vs <150 µg (Nazeri et al 2020b, Greenwood et al 2023, Businge et al 2021, Bolfi et al 2025), UIC < 100 vs 100-149 vs 150-249 vs > 250µg/L (Nazarpour et al 2020 and iodine supplementation vs control (Nazeri et al 2021) on a range of birth outcomes. No consistent association between higher urinary iodine and improved birth outcomes were reported across reviews.

Bolfi et al (2025) assessed the certainty of evidence using the GRADE approach, noting that evidence was low or very low certainty across all outcomes, although reasons for downgrading were not reported. Limitations in the evidence base include failure of observational studies to measure or account for all relevant confounders, and heterogeneity in population status - with the review including sufficient (34 studies), mildly deficient (9 studies) and moderately deficient (15 studies) populations - and timing of exposure (UIC) measurement.

Further, whilst WHO epidemiologic criteria define UIC <150 μ g/day as insufficient, this is a population measure and is not a reliable indicator for determining individual status.

The available evidence for the relationship between urinary iodine and birth outcomes is not sufficiently sensitive to inform recommendations about iodine intake.

Health outcomes in children and adolescents

Thyroid function

Iodine deficiency

A recent systematic review identified 7 studies examining the relationship between mild-to-moderate deficiency and thyroid function in children and adolescents (Aarsland et al 2025). Studies were all cross-sectional in design, with one study a repeated cross-sectional design. Most studies were in school-aged children (5 studies), with one in infants and one including children up to <18 years. Most studies grouped participants as deficient (UIC <100 $\mu g/L$) vs adequate (UIC>100 $\mu g/L$), and data for mild-to-moderately deficient populations were not specifically reported. Six of seven studies found no association between UIC and TSH, with one study reporting a decrease and subsequent increase in TSH with higher UIC in school-aged children. Similarly, only one of four studies reported decreased T3 with UIC <100 $\mu g/L$, although T3 values remained within the normal reference range. Four studies found no clear association between UIC level and T4. Overall, the authors graded the evidence as 'limited—no conclusion' under the World Cancer Research Fund criteria for judging the certainty of evidence (WCRF 2018). Limitations included the predominance of cross-sectional studies and a lack of robust study designs, inconsistent results between studies including in the direction and significance of effects.

Excess intakes

There is a lack of data on the effects of iodine excess on thyroid function in children and adolescents, with studies reporting inconsistent findings about the association between high iodine intakes and thyroid function in children (Sohn et. al. 2024). Concerns have been raised about the effects of exposure to high acute doses of iodine via iodinated contrast media on thyroid function in children, with studies reporting increased TSH and reduced FT3 and FT4 in exposed groups (Sohn et al 2024). However, these exposures typically involve administration of doses substantially exceeding recommendations (some 150 times the recommended daily intakes) and consequently, they are of limited utility when seeking to establish safe tolerable upper limits for intake within the general population.

Child development

Few studies have been published examining the effects of iodine exposure in children, with studies on child development predominantly evaluating the effects of maternal iodine exposure during pregnancy and lactation.

One review was identified exploring the effects of iodine exposure in childhood on hearing (Dineva et al 2023). It identified 9 studies comprising 1 RCT, 2 NRSIs and 6 cross-sectional studies in severely deficient (4 studies), severe-to-moderately deficient (1 study), mildly deficient (1 study) or iodine sufficient (3 studies) children. Iodine exposure was determined from UIC - along with thyroid volume / goitre or Tg where available - in the absence of dietary intake data. Studies were generally assessed as being at high (RCT) or serious risk of bias (NRSIs), or of poor quality (cross-sectional studies). The generally poor quality of studies, and heterogeneity in study designs and iodine measurement methods limited comparability across studies. Overall, the authors concluded the available evidence was limited and further research on the effects of iodine status on hearing development in children is required.

Derivation of draft NRVs

Nutritional adequacy recommendations

Adults

Current recommendations for adults are based on studies reporting average thyroid iodine accumulation and turnover between 91.2 and 96.5 μ g/day in euthyroid adults (Fisher and Oddie, 1969a, Fisher and Oddie, 1969b). Values were rounded to 100 μ g/day to reflect New Zealand data on urinary iodide to thyroid volume (Thomson et. al. 2001).

The RDI was established by applying a 20% co-efficient of variation (CV), being half of the 40% CV reported by Fisher and Oddie (1969a). This adjustment was made on the basis that half of the observed variation was considered to be due to the complexity of the experimental design and calculations used to estimate turnover (US IOM, 2001).

A 2014 balance study (Tan, 2019) found that neutral balance was achieved with an iodine intake of 111 μ g/day, which equates to an RDI of 155 μ g/day when a 20% CV is applied. The balance study had several limitations including no run-in period, and it was conducted in a small sample (N=25) of iodine replete, euthyroid female students. Consequently, findings may not be broadly generalisable to the Australian and New Zealand context.

More recently, concerns have been raised about the reliability of balance and thyroid accumulation studies for estimating requirements (EFSA 2014, Blomhoff et al. 2023), including:

- methodological limitations of balance studies (eg. inadequate run-in periods, accuracy of methods for measuring intake and losses)
- that observed 'balance' may reflect requirements that only apply in a narrow range of contexts, or reflect transient adaptive changes rather than steady state requirements
- wide variation in the iodine intakes associated with 'null' balance reported across studies
- poor generalisability of estimates based on thyroid accumulation studies, noting that
 thyroidal iodine capture is downregulated with increasing iodine intake. Thyroid
 accumulation studies upon which current NRVs are based (Fisher and Oddie, 1969a, Fisher
 and Oddie, 1969b) measured UIE at 410 μg/day and 280 μg/day respectively, suggestive
 of higher iodine intakes.

Despite this uncertainty in the evidence base, the thyroid accumulation studies and recent balance study (Tan 2014) collectively estimate requirements between 90 and 110 μ g/day. Therefore, the available evidence - although limited - supports maintaining the current EAR of 100 μ g/day.

Furthermore, the RDI of 150 μ g/day - derived by applying a CV of 20% to the EAR of 100 μ g/day - is supported by observational data suggesting that intakes of 150 μ g/day intake in adults corresponds with a low population prevalence of goitre (EFSA 2014).

Pregnancy

The current (2006) values for pregnancy were based on adult requirements, adjusted to account for additional requirements during pregnancy. Daily fetal thyroid iodine uptake was estimated at 75 μ g/day based on 100% daily turnover of iodine in the newborn thyroid, and an estimated thyroid content of 50-100 μ g in newborns (Delange and Burgi, 1989; Delange and Ermans, 1991). Assuming an EAR of 95 μ g/day for non-pregnant women (based on the EAR identified by the US IOM), a preliminary EAR of 170 μ g/day during pregnancy was calculated.

This estimate was reduced to 160 µg/day in view of the following supportive evidence:

- a balance study which reported neutral balance among pregnant women with iodine intakes of around 160 µg/day (Dworkin et al., 1966); and
- studies on the effect of iodine supplementation on maternal thyroid volume, with daily intakes of 250 to 280 μ g/day found to prevent goitre during pregnancy (Pedersen et al., 1993), whereas intakes of 150 μ g/day were insufficient to prevent increased thyroid volume (Glinoer, 1998).

The RDI during pregnancy was estimated at 220 $\mu g/day$, based on an EAR of 160 $\mu g/day$ and applying a 20% CV.

More recently, a 2023 balance study found that neutral balance was reached with iodine intake of 202 $\mu g/day$ in a subset of 40 pregnant Chinese women (Chen et al 2023). However, Chen et al (2023) noted that estimated iodine balance was higher with increasing habitual intake and also varied by trimester. The authors also noted that missing data may have impacted findings, with 35% of participants lost to follow up by day 7. These findings correspond with an EAR of 200 $\mu g/day$ and RDI of 280 $\mu g/day$ - compared with the EAR of 160 $\mu g/day$ and RDI of 220 $\mu g/day$ suggested by Dworkin et al (1966).

Additional requirements during pregnancy have been estimated at 50 μ g/day, in iodine-sufficient individuals with adequate thyroidal iodine stores (EFSA, 2014). However, data suggests that Australian and New Zealand women of childbearing age may be mildly deficient, and adequate thyroidal iodine cannot be assumed. The total requirements for daily fetal thyroid iodine uptake is estimated at 75 μ g/day based on 100% daily turnover of iodine in the newborn thyroid, and an estimated thyroid content of 50-100 μ g in newborns (Delange, 1989; Delange and Ermans, 1991).

Although there is substantial uncertainty in the evidence, these additional data suggest that the current EAR of 160 μ g/day and RDI 220 μ g/day remain suitable for the Australian and New Zealand population.

Lactation

The current (2006) EAR during lactation was set at 190 $\mu g/day$, based on the adult EAR (100 $\mu g/day$) plus replacement of iodine secreted in breast milk estimated at 90 $\mu g/day$. The replacement value of 90 $\mu g/day$ was lower than the 114 $\mu g/day$ estimated by the US IOM (based on Gushurst et al 1984) as the panel considered a broader range of studies on the topic (Delange e al 1984, Gushurst et al 1984, FAO:WHO 2001, Johnson et al 1990). The RDI was set at 270 $\mu g/day$ assuming a CV of 20% for the EAR.

A 2018 systematic review found significant variation in BMIC is noted both between populations, and over the course of lactation (Dror & Allen 2018). It concluded that a BMIC of $150\mu g/L$ would meet- and potentially exceed - infant requirements in the first 6 months of lactation. This finding supports the conclusions of EFSA (2014) which suggested that positive balance was reached with BMIC between 100 and 200 $\mu g/L$. Assuming an average breast milk volume of 0.8L/day, an additional 120 $\mu g/day$ of iodine would be required to achieve BMIC of 150 $\mu g/L$.

A 2014 study found that lactating women with a BMIC of 112 μ g/L had median UIE of 87 μ g/L, putting them below the 100 μ g/L threshold for sufficiency (Andersen et al 2014). Based on this finding, and assuming an average breast milk volume of 0.8L / day, EFSA (2014) estimated daily losses to be 90 μ g/day.

A 2016 crossover study examining iodine balance in 11 healthy, formula-fed infants aged 2 to 5 months found that null balance occurred with intakes of 70 $\mu g/day$ (Dold et al 2016). However, it has been suggested that intakes should exceed that required for nutritional adequacy of infants during this life stage, to support accumulation of thyroidal iodine stores (Dror & Allen 2018). Furthermore, the small sample size of this study may not adequately account for individual variability in requirements.

Collectively, these studies suggest an additional requirement of 90-120 $\mu g/day$ to account for iodine losses through breast milk. In adequate populations, large stores of iodine exist (primarily as iodinated Tg) and intake is not required to fully compensate for iodine losses in breast milk. However, in Australia and New Zealand mild population deficiency persists in females of reproductive age. Consequently, adequate status should not be presumed, and recommendations may need to approach full replacement of losses to avoid deficiency states.

Although the evidence is uncertain, these recent studies suggest that the current EAR of 190 μ g/day and RDI of 270 μ g/day remain suitable for the Australian and New Zealand populations.

Children and adolescents

There is a lack of data on iodine requirements in childhood and adolescents, and current recommendations for younger children have been derived from very small samples - or by extracting data for a small number of individuals within a broader sample - . within balance studies of short duration. These studies may be unreliable for estimating individual requirements. These methods lack precision and methodological rigour, and are unreliable for estimating individual requirements.

Consequently, in the absence of sufficient evidence, EARs for children and adolescents were extrapolated from the adult EAR (100 $\mu g/day$) based on metabolic body weight, using the formula:

Estimated EAR_{child} = Estimated EAR_{adult} x [Weight_{child} / Weight_{adult}] $^{0.75}$ x [1 + growth factor]

Inputs were as follows:

 $EAR_{adult} = 100 \mu g/day$

Weight adult = 62.9 kg

The Growth Factors (GF) and Reference Weights were as per the NHMRC Methodological Framework for the Review of Nutrient Reference Values (NHMRC, 2025). Reference Weights were derived from contemporary 'ideal' body weight data from the Australian Bureau of Statistics.

Calculated values were rounded up to ensure the requirements of older children within each age bracket were met, and to smooth transitions between age groups. Data inputs and extrapolated data are presented in Table 9.

Table 10. Extrapolation of Adult EAR to child age groups

Age group	Child reference weight (kg)	Adult reference weight (kg)	Growth Factor (GF)	Extrapolated Child EAR μg/day	Rounding μg/day	Proposed EAR μg/day
NRVs age groupings:						
1 to under 4 years	13.0	62.9	0.25	38.3	26.7	65
4 to under 9 years	22.4	62.9	0.09	50.2	14.8	65
9 to under 14 years	40.7	62.9	0.13	81.5	-6.5	75
14 to under 18 years	57.6	62.9	0.08	101.1	-6.1	95
Alternative age group	ings by scho	ool-age:				
12 to under 24 months	10.6	62.9	0.44	37.9	27.1	65
2 to under 5 years	15.9	62.9	0.12	39.9	25.1	65
5 to under 12 years	28.6	62.9	0.12	62.0	8.0	70
12 to under 18 years	54.5	62.9	0.07	96.1	-6.1	90

The RDI was then calculated applying a CV of 20%, and rounded as follows:

Age group	EAR ^{child} μg/day	Co-efficient of variation (CV)	RDI (calculated) µg/day	Rounding μg/day	Proposed RDI (rounded) μg/day
NRVs age groupings:					
1 to under 4 years	65	20%	91	-1	90
4 to under 9 years	65	20%	91	-1	90
9 to under 14 years	75	20%	105	15	120
14 to under 18 years	95	20%	133	17	150
Age (grouped by schoo	ol-age):				
12 to under 24 months	65	20%	91	-1	90
2 to under 5 years	65	20%	91	-1	90
5 to under 12 years	70	20%	98	12	110
12 to under 18 years	90	20%	126	14	140

This represents a change to methods for calculating the EAR and RDI for children and adolescents. However, the EAR and RDI recommendations are not materially changed, beyond the adjustments required to align with new age groupings.

Upper Level (UL)

There is a lack of sensitive end points for establishing upper levels for iodine, with the relationship between iodine intake and adverse health outcomes either not well characterised, or insufficiently sensitive or reliable to inform establishment of an NRV. In the absence of more robust biomarkers, elevated TSH has previously been used to derive Upper Level recommendations, as an early biomarker of thyroid dysfunction.

Adults

Although evidence suggests that the adult thyroid has significant capacity to adapt to high iodine intakes, some individuals may be particularly sensitive to excess iodine. The UL should aim to protect almost all individuals within a population. Consequently, the UL for adults was established based on elevated TSH using data from Sang (2012) which explored the association between varying intakes of iodine and thyroid function, including elevated TSH. Elevated TSH and increasing rates of subclinical hypothyroidism were observed with iodine intakes of 869 μ g/day or greater. Accordingly, 869 μ g/day was selected as the LOAEL, as the inflexion point at which cases of subclinical hypothyroidism became significantly increased, and the upper bound of the 95% CI for TSH was elevated beyond 5.0 mU/L (Sang et. al. 2012 reported a reference range of 0.3 - 5.0 mU/L for the TSH assay used).

An Uncertainty Factor of 1.5 was applied, with consideration given to:

- Substantial inter-individual variability in tolerance for high iodine intakes, noting that selection of the LOAEL can be expected to account for some level of individual variability
- The use of a LOAEL rather than a NOAEL as a reference point
- the mild and reversible nature of the end-point

This resulted in an estimated UL of 579.3 μ g/day, which was rounded up to 600 μ g/day.

Pregnancy

The WHO defines UIC > 500 ug/L during pregnancy as an "excess intake" (WHO, 2007). However, in this context the term excess refers to intakes that are "in excess of the amount required to prevent and control iodine deficiency". Consequently, the 500 μ g/L threshold should not be interpreted as describing a UL.

There remains a dearth of good quality data on the effects of high intakes of iodine on maternal and child outcomes during pregnancy. Nevertheless, concerns have been raised about the effect of high iodine intakes during pregnancy and adverse effects on the foetus, due to the inability to escape from the Wolff-Chaikoff effect, which begins to develop around 36 weeks gestation, fully maturing during the early neonatal period.

Data from cross-sectional studies suggest that intakes >500 μ g/day during pregnancy may be associated with maternal thyroid dysfunction (Wu et al 2023; Shi et al 2015; Guo et al 2025). However, the evidence is not compelling, with a 2018 systematic review reporting inconsistent findings across studies (Katagiri 2018). Concerns about imprecise estimation of intake based on urinary iodine during pregnancy and limited generalisability to the Australian and New Zealand nutritional context further limit certainty in the evidence.

In the absence of robust evidence for the effects of excess iodine intake during pregnancy, it is proposed that the adult UL of 600 μ g/day be adopted.

The overwhelming public health concern in Australia and New Zealand continues to be iodine deficiency during pregnancy. Any changes to the UL during pregnancy should be carefully communicated to ensure that the need for supplementation during pregnancy continues to be a core message.

Lactation

Concerns have been raised about the effect of high maternal iodine intake on fetal development for pre-term neonates. The developing fetus is particularly vulnerable to excess iodine, as the Wolff-Chaikoff escape mechanism does not develop until around 36 weeks gestation, or after birth in pre-term neonates. However, data in this cohort are lacking.

In the absence of data, the UL for lactating women should be set based upon the recommendation for during pregnancy.

The overwhelming public health concern in Australia and New Zealand continues to be iodine deficiency during pregnancy and lactation. Any changes to the UL during lactation should be carefully communicated to ensure that the need for supplementation during pregnancy and throughout lactation continues to be a core message.

Children and adolescents

In the absence of evidence in children and adolescents, recommendations can be extrapolated from the adult UL, based on metabolic body weight using the following formula:

 $UL_{child} = UL_{adult} \times (Weight_{child}/Weight_{adult})^{0.75}$

Reference weights used were based on 2022 'ideal' weight data from the Australian Bureau of Statistics, as per the current Methodological Framework (NHMRC, 2025).

Calculated values were rounded up to the nearest 50 (children aged <12 years) or rounded to the nearest 100 (children aged >12 years) to arrive at final values. When rounding values, consideration was given to smoothing transitions between age groupings per the Methodological Framework (NHMRC, 2025).

Inputs for extrapolation and the raw calculated UL value are shown at Table 10.

Table 11. Extrapolation of Adult UL to child age groups

Age group	UL _{adult} (μg/day)	Child Ref Weight (kg)	Adult Ref Weight (kg)	Calculated UL _{child} (µg/day)	Rounding (µg/day)	Proposed UL (μg/day)
NRVs age groupings:						
1 to under 4 years	600	13	62.9	183.9	16.1	200
4 to under 9 years	600	22.4	62.9	276.6	23.4	300
9 to under 14 years	600	40.7	62.9	432.9	17.1	450
14 to under 18 years	600	57.6	62.9	561.7	-11.7	550
Age (grouped by scho	ol-age):					
12 to under 24 months	600	10.6	62.9	157.8.0	42.2	200
2 to under 5 years	600	15.9	62.9	213.9	36.1	250
5 to under 12 years	600	28.6	62.9	332.2	17.8	350
12 to under 18 years	600	54.5	62.9	538.8	-38.8	500

Benchmarking

International comparisons

Nutritional adequacy recommendations

Table 11shows NRV recommendations for nutritional adequacy (preventing iodine deficiency) across comparable international jurisdictions. To account for differing age groupings across jurisdictions, values have been adjusted using a weighted average calculation, to align with NHMRC's proposed age groupings. Adjusted values are denoted by * in the table. Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

Table 12. Comparison of proposed Als with international nutritional adequacy recommendations from comparable international jurisdictions

Age (years)	Proposed ANZ RDI (µg/day)	Current ANZ RDI (2006) (µg/day)	EFSA AI (2014) (μg/day)	NNR AI (2023) (μg/day)	WHO RDI (2007) (μg/day)	D-A-C-H RDI (2013) (μg/day)
Adults 18 +years:	150	150	150	150	150	200
Pregnancy (all):	220	220	200	200	230	230
Lactation	270	270	200	200	260	260
Children and adolesce	nts (by NRVs	s age groups)				
1 to under 4 years	90	90	90	100	90	100 - 120
4 to under 9 years	90	90	90	100	108*	156*
9 to under 14 years	120	120	108*	115*	132*	176*
14 to under 18 years	150	150	128*	129*	150	200
Children and adolesce	nts (grouped	d by school-age	e)			
12 to under 24 months	90	90*	90	100	90	100
2 to under 5 years	90	90*	90	100	90	107*
5 to under 12 years	110	103*	94*	103*	120	146*
12 to under 18 years	140	140*	125*	128*	145*	197*

Upper Levels

Table 12 shows NRV recommendations for iodine upper levels across comparable international jurisdictions. To account for differing age groupings across jurisdictions, values have been adjusted using a weighted average calculation, to align with NHMRC's proposed age groupings. Adjusted values are denoted by * in the table. Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

Table 13. Comparison of proposed ULs with international Upper Level recommendations from comparable international jurisdictions

	<u> </u>						
Age (years)	Proposed ANZ UL (μg/day)	NHMRC (2006) Current UL (µg/day)	US/ Canada (2001) UL (µg/day	EFSA (2002) UL (μg/day)	NNR (2023) UL (μg/day)	WHO (2004) UL^ (µg/day)	D-A-C-H (2015) UL (μg/day)
Adults 18 +years:	600	1,100	1,100	600	600	1,875	500
Pregnancy (all):	600	1,00	1,100	600	600	-	-
Lactation (all)	600	1,100	1,100	600	600	-	-
Children and	adolescents	(by NRVs age	e groups)				
1 to under 4 years	200	200	200	200	-	-	-
4 to under 9 years	300	300	300	280*	-	-	-
9 to under 14 years	450	600	600	390*	-	-	-
14 to under 18 years	550	900	900	488*	600^	-	-
Children and	adolescents	(grouped by	school-age)				
12 to under 24 months	200	200	200	200	-	-	-
2 to under 5 years	250	233*	233*	217*	-	-	-
5 to under 12 years	350	429*	429*	307*	-	-	-
12 to under 18 years	500	800*	800*	475*	600^	-	-

[^] NNR (2023) specifies a UL for 14 - 18 year olds during lactation or pregnancy only

Food system and foundation diet modelling

Data from the food modelling system developed to inform revision to the Australian Dietary Guidelines (NHMRC 2011) were extracted for comparison with NRV recommendations. Extracted data are presented in Table 9 (adults), Table 10 (during pregnancy), Table 11 (during lactation), and Table 12 (children and adolescents). Estimates of dietary iodine intake that are lower than the proposed NRV are highlighted orange.

Adults

Table 14. Estimated iodine intake in adults from food modelling (Source: NHMRC 2011)

	Estimated intake from food modelling (μg/day)							
Population	Core food groups	Aust. Guide to Healthy Eating 1998 (AGTHE98)^	Foundation diets - overall	Omnivore	Rice-based	Pasta-based	Lacto-ovo- vegetarian	
Persons 19+ years	148	NR	NR	NR	NR	NR	NR	
Males 19 - 30 years	NR	NR	197	NR	213	181	177	
Males 31 - 50 years	NR	NR	210	NR	224	192	190	
Males 51 - 70 years	NR	NR	219	NR	229	198	198	
Males 70+ years	NR	NR	256	NR	275	249	215	
Females 19 - 30 years	NR	170 275^	210	NR	204	187	173	
Females 31 - 50 years	NR	178-275^	211	NR	210	197	178	
Females 51 - 70 years	NR	170 276^	275	NR	290	229	233	
Females 70+ years	NR	178-236^	260	NR	289	223	218	

[^]Age groupings for AGTHE98 are 19 - 60yrs and 60+ yrs.

Pregnancy

Table 15. Estimated iodine intake during pregnancy from food modelling (Source: NHMRC 2011)

		Estimated intake from food modelling (µg/day)					
Population	Core food groups	Aust. Guide to Healthy Eating	Foundation diets - overall	Omnivore	Rice-based	Pasta-based	Lacto-ovo- vegetarian
Pregnant persons (age not specified)	161	NR	NR	NR	NR	NR	NR
Pregnant females 14 - 18 years	NR	NR	233	NR	NR	NR	NR
Pregnant females 19 - 30 years	NR	NR	258	NR	NR	NR	NR
Pregnant females 31 - 50 years	NR	NR	261	NR	NR	NR	NR

Lactation

Table 16. Estimated iodine intake during lactation from food modelling (Source: NHMRC 2011)

		Estimated intake from food modelling (µg/day)					
Population	Core food groups	Aust. Guide to Healthy Eating	Foundation diets - overall	Omnivore	Rice-based	Pasta-based	Lacto-ovo- vegetarian
Lactating persons (age not specified)	187	NR	NR	NR	NR	NR	NR
Lactating females 14 - 18 years	NR	NR	253	NR	NR	NR	NR
Lactating females 19 - 30 years	NR	NR	251	NR	NR	NR	NR
Lactating females 31 - 50 years	NR	NR	251	NR	NR	NR	NR

Children and adolescents

Table 17. Estimated iodine intake in children and adolescents from food modelling (Source: NHMRC 2011)

	g/day)						
Population	Core food groups	Aust. Guide to Healthy Eating	Foundation diets - overall	Omnivore	Rice-based	Pasta-based	Lacto-ovo- vegetarian
Persons 4 - 7 years	112	188 - 227	NR	NR	NR	NR	NR
Persons 8 - 11 years	132	214 - 273	NR	NR	NR	NR	NR
Persons 12 - 18 years	163	247 - 365	NR	NR	NR	NR	NR
Males 13 - 23 months	NR	NR	95	NR	NR	NR	NR
Males 2 - 3 years	NR	NR	117	NR	NR	NR	124
Males 4 - 8 years	NR	NR	143	NR	NR	NR	132
Males 9 - 11 years	NR	NR	173	NR	200	163	170
Males 12 - 13 years	NR	NR	235	NR	245	215	224
Males 14 - 18 years	NR	NR	209	NR	230	203	236
Females 13 - 23 months	NR	NR	96	NR	NR	NR	NR
Females 2 - 3 years	NR	NR	119	NR	NR	NR	102
Females 4 - 8 years	NR	NR	133	NR	NR	NR	109
Females 9 - 11 years	NR	NR	189	NR	195	158	169
Females 12 - 13 years	NR	NR	221	NR	234	211	215
Females 14 - 18 years	NR	NR	212	NR	223	200	244

Proposed Recommendations

Population	EAR (μg/day)	RDI (μg/day)	ΑΙ (μg/day)	UL (µg/day)	Comment
Infants					
0 - 6 months			90	Not possible	Unchanged - not
7 - 12 months			110	to establish	updated in 2025 review
Children and adolescents	- by NRVs a	ge grouping	gs		
1 to under 4 years	65	90		200	
4 to under 9 years	65	90		300	
9 to under 14 years	75	120		450	
14 to under 18 years	95	150		550	
Alternative children and a	dolescents -	- by school-	age groupir	ngs	
12 to under 24 months	65	90		200	
2 to under 5 years	65	90		250	
5 to under 12 years	70	110		350	
12 to under 18 years	90	140		500	
Adults					
18 to under 30 years	100	150		600	
30 to under 50 years	100	150		600	
50 to under 65 years	100	150		600	
65 to under 75 years	100	150		600	
75 years and older	100	150		600	
Pregnancy					
All	160	220		600	
Lactation					
AII	190	270		600	

Comprehensive Evidence-to-Decision Frameworks documenting how the final recommendations have been determined are presented in Appendix E.

References

Aarsland TE, Aakre I, Stea TH, Henjum S, Markhus MW, Strand TA, Dahl L, Korevaar TIM, et. al. 2025. Association of Mild-to-Moderate Iodine Deficiency With Thyroid Function—A Systematic Review and Meta-analysis, *Advances in Nutrition*, Vol 16 (9).

Abel MH, Korevaar TIM, Erlund I, Villanger GD, Caspersen IH, Arohonka P, Alexander J, Meltzer HM, Brantsæter AL. Iodine Intake is Associated with Thyroid Function in Mild to Moderately Iodine Deficient Pregnant Women. Thyroid. 2018 Oct;28(10):1359-1371. doi: 10.1089/thy.2018.0305. PMID: 30132420; PMCID: PMC6157349.

Al-Balushi B, Al-Balushi R, Waly M, Al-Attabi Z. Global status of food composition database: A short review. International Journal of Nutrition, Pharmacology, Neurological Diseases 13(4):p 240-242, October-December 2023. | DOI: 10.4103/ijnpnd.ijnpnd_48_23

Alexander EK, Marqusee E, Lawrence J, Jarolim P, Fischer GA and Larsen PR, 2004. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. New England Journal of Medicine, 351, 241-249.

Andersen SL, Moller M and Laurberg P. 2014. Iodine concentrations in milk and in urine during breastfeeding are differently affected by maternal fluid intake. *Thyroid*, 24: 764-772

Angelo, L., Niederer, R., & Hart, R. 2020. <u>Thyroid eye disease in New Zealand: interaction between ethnicity and smoking status</u>. *The New Zealand Medical Journal, 133* (1526), 12-17.

Aquaron R, Delange F, Marchal P, Lognone V and Ninane L, 2002. Bioavailability of seaweed iodine in human beings. Cellular and Molecular Biology, 48, 563-569.

Arturi F, Presta I, Scarpelli D, Bidart JM, Schlumberger M, Filetti S, Russo D. Stimulation of iodide uptake by human chorionic gonadotropin in FRTL-5 cells: effects on sodium/iodide symporter gene and protein expression. Eur J Endocrinol. 2002 Nov;147(5):655-61. doi: 10.1530/eje.0.1470655.

Australian Bureau of Statistics (ABS) 2013. Iodine [Internet]. Data source: 2011-12 National Health Measures Survey. Canberra: December 11 [accessed 22 July 2024]. Available from: https://www.abs.gov.au/articles/iodine.

Australian Bureau of Statistics (ABS). 2015. 2011-13 Australian Health Survey: Usual Nutrient Intakes. Released 06/03/2015. Available from:

https://www.abs.gov.au/statistics/health/health-conditions-and-risks/usual-nutrient-intakes/latest-release [Accessed 2 June 2025]

Australian Bureau of Statistics (ABS). 2025a. 2022-24 National Health Measures Survey (NHMS). Released 31/03/2025. Available from:

https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-measures-survey/latest-release#nutrient-biomarkers [Accessed 2 June 2025]

Australian Bureau of Statistics (ABS). 2025b. 2023-24 Apparent Consumption of Selected Foodstuffs, Australia. Released 281/03/2025. Available from

https://www.abs.gov.au/statistics/health/health-conditions-and-risks/apparent-consumption-selected-foodstuffs-australia/2023-24

Australian Bureau of Statistics (ABS). 2025c. 2023 National Nutrition and Physical Activity Survey (NNPAS). Released 05/09/2025. Available from:

https://www.abs.gov.au/statistics/health/food-and-nutrition/food-and-nutrients/2023#selected-micronutrients-and-caffeine [Accessed 15 September 2025]

Australian Institute of Health and Welfare (AIHW) 2016. Monitoring the health impacts of mandatory folic acid and iodine fortification. Cat. no. PHE 208. Canberra: AIHW

Australian Institute of Health and Welfare (AIHW) 2024. Cancer data in Australia. Available from: https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia (accessed 20 January 2025)

Azizi F, Smyth P. Breastfeeding and maternal and infant iodine nutrition. Clin Endocrinol 2009; 70(5): 803-9.

Barkley RA, Thompson TG. The total lodine and lodate-iodine content of sea-water. Deep Sea Research 1960;7(1):24-34.

Beckford K, Grimes CA, Margerison C, Riddell LJ, Skeaff SA, West ML, Nowson CA. A systematic review and meta-analysis of 24-h urinary output of children and adolescents: impact on the assessment of iodine status using urinary biomarkers. Eur J Nutr. 2020 Oct;59(7):3113-3131. doi: 10.1007/s00394-019-02151-w. Epub 2019 Nov 29. PMID: 31784814; PMCID: PMC7501103.

Berbel and de Escobar (2011). Iodine and Brain Development. Chapter 135, Handbook of Behavior, Food and Nutrition. Eds: VR Preedy, RR Watson, CR Martin. Springer. pp 2105-2134 http://dx.doi.org/10.1007/978-0-387-92271-3 135

Bernard JD, McDonald RA and Nesmith JA, 1970. New normal ranges for the radioiodine uptake study. Journal of Nuclear Medicine, 11, 449-451.

Blikra MJ, Henjum S, Aakre I. Iodine from brown algae in human nutrition, with an emphasis on bioaccessibility, bioavailability, chemistry, and effects of processing: A systematic review. 2022. Compr Rev Food Sci Food Saf. 21(2):1517-1536. doi: 10.1111/1541-4337.12918. Epub 2022 Mar 1. PMID: 35233943.

Blikra, M. J., Aakre, I., & Rigutto-Farebrother, J. (2024). Consequences of acute and long-term excessive iodine intake: A literature review focusing on seaweed as a potential dietary iodine source. *Comprehensive Reviews in Food Science and Food Safety*, *23*(6), e70037.

Blomhoff R, Andersen R, Arnesen, E et al. 2023. Nordic Nutrition Recommendations 2023. Nordic Council of Ministers, Copenhagen. Available from

https://pub.norden.org/nord2023-003/nord2023-003.pdf. Accessed 5 December 2024.

Bolfi F, Marum MB, Fonseca SEDS, Mazeto GMFS, Nogueira CR, Nunes-Nogueira VDS. Association between individual urinary iodine concentrations in pregnant women and maternal/newborn outcomes. Endocr Connect. 2025 Jan 29;14(3):e240621. doi: 10.1530/EC-24-0621. PMID: 39804211; PMCID: PMC11799753.

Bottini PV, Garlipp CR, Lima PRM, Brito IT, Carvalho LMG. Are patients adequately informed about procedures for 24-h urine collection. Clin Chem Lab Med. 2020;58:32-5. Braverman K D and Pearce E N. 2025. Iodine and Hyperthyroidism: A Double-Edged Sword, Endocrine Practice, Vol 31 (3), pp. 390-395

Brough L and Skeaff S. 2024. lodine. *Advances in Nutrition*, 15 (2) 100168, ISSN 2161-8313, https://doi.org/10.1016/j.advnut.2024.100168

Businge CB, Usenbo A, Longo-Mbenza B, Kengne AP. Insufficient iodine nutrition status and the risk of pre-eclampsia: a systemic review and meta-analysis. BMJ Open. 2021 Feb 10;11(2)

Cao LZ, Peng XD, Xie JP, Yang FH, Wen HL, Li S. The relationship between iodine intake and the risk of thyroid cancer: A meta-analysis. Medicine (Baltimore). 2017 May;96(20):e6734. doi: 10.1097/MD.0000000000006734. PMID: 28514290; PMCID: PMC5440127.

Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences. *Second National Report on Biochemical Indicators of Diet and Nutrition in the US Population, 2012.*

Chen W, Wang W, Gao M, Chen Y, Guo W, et. al. 2023. Iodine Intakes of <150µg/day or >550µg/day are Not Recommended during Pregnancy: A Balance Study. *The Journal of Nutrition*, 153 (7), pp. 2041-2050

Colzani R, Fang S L, Alex S, Braverman LE. 1998. The effect of nicotine on thyroid function in rats. *Metabolism.* 47, 154-157

Dafnis E, Sabatini S. 1992. The effect of pregnancy on renal function: physiology and pathophysiology. *Am J Med Sci* 303:184-205

D-A-CH (2015). German Nutrition Society, Austrian Nutrition Society, Swiss Nutrition Society (eds.). Dietary Reference Values. 2nd version of the 1st edition 2015, Neuer Umschau Buchverlag.

DeGroot LJ, 1966. Kinetic analysis of iodine metabolism. Journal of Clinical Endocrinology and Metabolism, 26, 149-173.

Delange F, Bourdoux P, Vo Thi LD, Ermans AM, Senterre J. 1984. Negative iodine balance in preterm infants. *Ann Endocrinol* 45:77.

Delange F, Burgi H. 1989. Iodine deficiency disorders in Europe. *Bull World Health Organ* 67:317-325.

Delange F, Ermans AM. 1991.Iodine deficiency. In: Braverman LE, editor; Utiger RD, editor., eds. Werner and Ingbar's the Thyroid: A Fundamental and Clinical Text, 6th ed. Philadelphia: JD Lippincott.

Delange F, Benker G, Caron P, Eber O, Ott W, Peter F, Podoba J, Simescu M, Szybinsky Z, Vertongen F, Vitti P, Wiersinga W, Zamrazil V. Thyroid volume and urinary iodine in European schoolchildren: standardization of values for assessment of iodine deficiency. Eur J Endocrinol. 1997 Feb;136(2):180-7. doi: 10.1530/eje.0.1360180. PMID: 9116913.

Delitala AP, Fanciulli G, Maioli M, Delitala G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur J Intern Med. 2017 Mar;38:17-24

Dohán O, De la Vieja A, Praoder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N. The sodium/iodide symporter (NIS): Characterization, regulation and medical significance. Endocrine Reviews 2003;24(I):48-77.

Dineva M, Fishpool H, Rayman MP, Mendis J, Bath SC. Systematic review and metaanalysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am J Clin Nutr. 2020 Aug 1;112(2):389-412. doi: 10.1093/ajcn/nqaa071. PMID: 32320029.

Dineva M, Rayman MP, Bath SC. 2021. Iodine status of consumers of milk-alternative drinks *v*. cows' milk: data from the UK National Diet and Nutrition Survey. Br J Nutr. 126(1):28-36. doi: 10.1017/S0007114520003876.

Dineva M, Hall A, Tan M, Blaskova A, Bath SC. Iodine status during child development and hearing ability: a systematic review. Br J Nutr. 2023 Mar 14;129(5):795-812. doi: 10.1017/S0007114522001441. Epub 2022 May 10. PMID: 35535480; PMCID: PMC9975783.

Dold S, Zimmermann MB, Baumgartner J,Davaz T, Galetti V, Braegger C, Andersson M. A dose-response crossover iodine balance study to determine iodine requirements in early infancy. Am J Clin Nutr 2016;104:620-8.

Dror DK, Allen LH. Overview of Nutrients in Human Milk. Adv Nutr. 2018 May 1;9(suppl_1):278S-294S. doi: 10.1093/advances/nmy022. PMID: 29846526; PMCID: PMC6008960.

Dworkin HJ, Jacquez JA, Beierwaltes WH. 1966. Relationship of iodine ingestion to iodine excretion in pregnancy. *J Clin Endocrinol Metab* 26:1329-1342.

Eastman CJ, Zimmermann MB. The Iodine Deficiency Disorders [Updated 6 Feb 2018]. In: Feingold KR, Ahmed SF, Anawalt B, et al., editors. Endotext [Internet]. South Dartmouth (MA); 2018. PMID: 25905411. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK285556/

Edmonds, J.C., McLean, R.M., Williams, S.M. *et al.* Urinary iodine concentration of New Zealand adults improves with mandatory fortification of bread with iodised salt but not to predicted levels. *Eur J Nutr* **55**, 1201-1212 (2016). https://doi.org/10.1007/s00394-015-0933-y

El-mani S, Charlton KE, Flood VM and Mullan J. Folic acid and iodine supplementation in pregnant women. *Nutrition & Dietetics*, 2014. 71: 236-244. https://doi.org/10.1111/1747-0080.12132

Empson, M., Flood, V., Ma, G., Eastman, C.J. and Mitchell, P. (2007), Prevalence of thyroid disease in an older Australian population. Internal Medicine Journal, 37: 448-455. https://doi.org/10.1111/j.1445-5994.2007.01367.x

Eng PH, Cardona GR, Previti MC, Chin WW, Braverman LE. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. European Journal of Endocrinology 2001;144:139-144.

European Food Safety Authority (EFSA) Scientific Committee on Food, 2003. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine. In: Tolerable Upper Intake Levels for Vitamins and Mineral. 135-150 pp. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerable_uil.pdf Accessed 5 December 2024.

European Food Safety Authority (EFSA) Panel on Dietetic Products Nutrition and Allergies, 2014. Scientific Opinion on Dietary Reference Values for iodine. EFSA Journal 2014;12(5):3660, 57 pp. doi:10.2903/j.efsa.2014.3660

European Food Safety Authority (EFSA), Dujardin B, Ferreira de Sousa, R, Gómez Ruiz JA, 2023. Scientific Report on the dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. *EFSA Journal* 2023; 21(1):7798, 47 pp. https://doi.org/10.2903/j.efsa.2023.7798

Eveleigh ER, Coneyworth L, Welham SJM. Systematic review and meta-analysis of iodine nutrition in modern vegan and vegetarian diets. Br J Nutr. 2023 Nov 14;130(9):1580-1594. doi: 10.1017/S000711452300051X. Epub 2023 Mar 13. PMID: 36912094; PMCID: PMCI0551477.

Farebrother J, Naude CE, Nicol L, Sang Z, Yang Z, Joost PL, et al. Effects of iodized salt and iodine supplements on prenatal and postnatal growth: a systematic review. Adv Nutr (Bethesda, Md) 2018; 9(3): 219-37

Finlayson J. Iodine and mid-life women living in Auckland, New Zealand who avoid bread: a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Human Nutrition. Massey University, Albany, Auckland, New Zealand. 2019. Available from: https://mro.massey.ac.nz/server/api/core/bitstreams/ce22b13b-af95-43c4-837e-a36fbb6b4cdd/content Accessed 9 April 2025

Fisher DA and Oddie TH, 1969a. Thyroid iodine content and turnover in euthyroid subjects: validity of estimation of thyroid iodine accumulation from short-term clearance studies. Journal of Clinical Endocrinology and Metabolism, 29, 721-727.

Fisher DA and Oddie TH, 1969b. Thyroidal radioiodine clearance and thryoid iodine accumulation:contrast between random daily variation and population data. Journal of Clinical Endocrinologyand Metabolism, 29, 111-115.

Flieger J, Kawka J, Tatarczak-Michalewska M. Levels of the Thiocyanate in the Saliva of Tobacco Smokers in Comparison to e-Cigarette Smokers and Nonsmokers Measured by HPLC on a Phosphatidylcholine Column. Molecules. 2019 Oct 21;24(20):3790. doi: 10.3390/molecules24203790. PMID: 31640293; PMCID: PMC6832790.

Follis RH, Jr., Vanprapa K and Damrongsakdi D, 1962. Studies on iodine nutrition in Thailand. Journal of Nutrition, 76, 159-173.

Food and Agricultural Organization (FAO):World Health Organization(WHO). Human vitamin and mineral requirements. Report of a joint FAO:WHO expert consultation. Bangkok, Thailand. Rome: FAO, 2001.

Food Standards Australia New Zealand (FSANZ), 2014. 24th Australian Total Diet Study. Available from: https://www.foodstandards.gov.au/sites/default/files/2023-11/24th-ATDS.pdf (accessed 08 September 2025).

Food Standards Australia New Zealand (FSANZ), 2016. Monitoring the Australian population's intake of dietary iodine before and after mandatory fortification. Available from:

https://www.foodstandards.gov.au/sites/default/files/publications/Documents/Iodine%2 OFortification%20Monitoring%20Report.pdf (accessed 30 July 2024) Gaitan E, 1990. Goitrogens in food and water. Annual Review of Nutrition, 10, 21-39.

Gardner DF, Centor RM, Utiger RD. 1988. Effects of low dose oral iodide supplementation on thyroid function in normal men. *Clin Endocrinol (Oxf)*. 28(3):283-8.

Gibbons V, Conaglen JV, Lillis S, Naras V, Lawrenson R. Epidemiology of thyroid disease in Hamilton (New Zealand) general practice, *Australian and New Zealand Journal of Public Health*, Volume 32, Issue 5, 2008, Pages 421-423.

Gibson RS. Principles of nutritional assessment. New York: Oxford University Press. 1991:749-766.

Gilbert RM, Hadlow NC, Walsh JP, et al. Assessment of thyroid function during pregnancy: first-trimester (weeks 9-13) reference intervals derived from Western Australian women. Med J Aust 2008;189:250-3.

Glinoer D. 1998. Iodine supplementation during pregnancy: Importance and biochemical assessment. *Exp Clin Endocrinol Diabetes* 106:S21

Glinoer D. 2001. Pregnancy and iodine. *Thyroid,* Vol 11 pp. 471-481

Greenwell J, Grant M, Young L, Mackay S, Bradbury KE. The prevalence of vegetarians, vegans and other dietary patterns that exclude some animal-source foods in a representative sample of New Zealand adults. Public Health Nutr. 2023 Dec 5;27(1):e5.

Greenwood DC, Webster J, Keeble C, Taylor E, Hardie LJ. Maternal Iodine Status and Birth Outcomes: A Systematic Literature Review and Meta-Analysis. Nutrients. 2023 Jan 12;15(2):387.

Guess K, Malek L, Anderson A, Makrides M, Zhou SJ. Knowledge and practices regarding iodine supplementation: A national survey of healthcare providers. *Women and Birth*, 2017. Vol. 30 (1), pp. e56-e60.

Gunnarsdóttir I, Brantsæter AL. Iodine: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023 Dec 26;67. doi: 10.29219/fnr.v67.10369. PMID: 38187800; PMCID: PMCI0770700.

Guo W, Chen W, Zhang W. 2025. Global Perspectives on China's Iodine Dietary Reference Intakes: Revisions, Public Health Implications, and Future Strategies. J Nutr. 2025 Jul;155(7):2076-2085. doi: 10.1016/j.tjnut.2025.03.019. Epub 2025 Mar 17. PMID: 40107453

Gushurst CA, Mueller JA, Green JA, Sedor F. 1984. Breast milk iodine: Reassessment in the 1980s. *Pediatrics* 73:354-357.

Guttikonda K, Travers CA, Lewis PR, Boyages S. Iodine deficiency in urban primary school children: a cross-sectional analysis. Med J Aust. 2003 Oct 6;179(7):346-8. doi: 10.5694/j.1326-5377.2003.tb05589.x. PMID: 14503896.

Harding KB, Peña-Rosas JP, Webster AC, Yap CM, Payne BA, Ota E, De-Regil LM. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017 Mar 5;3(3):CD011761. doi: 10.1002/14651858.CD011761.pub2. PMID: 28260263; PMCID: PMC6464647.

Harmer I, Craddock JC, Charlton KE. 2025. How do plant-based milks compare to cow's milk nutritionally? An audit of the plant-based milk products available in Australia. Nutr Diet.82(1):76-85. doi: 10.1111/1747-0080.12906.

Harrison MT, 1968. Iodine balance in man. Postgraduate Medical Journal, 44, 69-71.

Hay I, Hynes KL, Burgess JR. 2019. Mild-to-Moderate Gestational Iodine Deficiency Processing Disorder. *Nutrients*. 11(9):1974. https://doi.org/10.3390/nu11091974

Henze M, Brown SJ, Hadlow NC, Walsh JP. Rationalizing Thyroid Function Testing: Which TSH Cutoffs Are Optimal for Testing Free T4? 2017. J Clin Endocrinol Metab. 102(11):4235-4241. doi: 10.1210/jc.2017-01322.

Hess SY. 2010. The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Practice & Research: Clinical Endocrinology and Metabolism, 24(I): I 17-132

Hetzel BS. 1983. Iodine deficiency disorders (IDD) and their eradication. Lancet. 2:1126-7.

Hickman, P.E., Koerbin, G., Simpson, A., Potter, J.M., Hughes, D.G., Abhayaratna, W.P., West, N., Glasgow, N., Armbruster, D., Cavanaugh, J. and Reed, M. (2017), Using a thyroid disease-free population to define the reference interval for TSH and free T4 on the Abbott Architect analyser. Clin Endocrinol, 86: 108-112. https://doi.org/10.1111/cen.13143

Hine T, Zhao Y, Begley A, Skeaff S, Sherriff J. Iodine-containing supplement use by pregnant women attending antenatal clinics in Western Australia. Aust N Z J Obstet Gynaecol. 2018 Dec;58(6):636-642

Hooper PL, Turner JR, Conway MJ and Plymate SR, 1980. Thyroid uptake of 123I in a normal population. Archives of Internal Medicine, 140, 757-758.

Hurley, S., Eastman, C. J., & Gallego, G. (2019). The impact of mandatory iodine fortification and supplementation on pregnant and lactating women in Australia. Asia Pacific Journal of Clinical Nutrition, 28(1), 15-22.

https://search.informit.org/doi/10.3316/ielapa.264165338344088

Huynh D, Condo D, Gibson R, Makrides M, Muhlhausler B, Zhou SJ. 2017. Comparison of breast-milk iodine concentration of lactating women in Australia pre and post mandatory iodine fortification. *Public Health Nutrition*. 20(1):12-17.

Hynes KL, Seal JA, Otahal P, Oddy WH & Burgess JR. Women remain at risk of iodine deficiency during pregnancy: the importance of iodine supplementation before conception and throughout gestation. *Nutrients* 2019 **11** 172. (https://doi.org/10.3390/nu11010172)

Hynes KL, Otahal P, Hay I, Burgress JR. Mild Iodine Deficiency During Pregnancy Is Associated With Reduced Educational Outcomes in the Offspring: 9-year follow-up of the gestational iodine cohort. *J Clin Endocrinol Metab*. 2013;98(5):1954-62. https://doi.org/10.1210/jc.2012-4249.

Hynes KL, Otahal P, Burgess JR, Oddy WH, Hay I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory

Processing Speed and Working Memory. Nutrients. 2017 Dec 13;9(12):1354. doi: 10.3390/nu9121354.

Ingenbleek Y, Malvaux P. 1974. Iodine balance studies in protein-calorie malnutrition. *Arch Dis Child* 49:305-309.

Inoue K, Ritz B, Brent GA, Ebrahimi R, Rhee CM, Leung AM. Association of Subclinical Hypothyroidism and Cardiovascular Disease With Mortality. JAMA Netw Open. 2020 Feb 05;3(2):e1920745

International Agency for Research on Cancer New Zealand. 2022. Global Cancer Observatory - Cancer Today 2022 - New Zealand Fact Sheet. Available from: https://gco.iarc.who.int/media/globocan/factsheets/populations/554-new-zealand-fact-sheet.pdf (Accessed 20 January 2025)

IOM (Institute of Medicine), 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington DC, USA, 797 pp.

Jahreis G, Hausmann W, Kiessling G, Franke K and Leiterer M, 2001. Bioavailability of iodine from normal diets rich in dairy products--results of balance studies in women. Experimental and Clinical Endocrinology and Diabetes, 109, 163-167.

Jin Y, Coad J, Zhou SJ, Skeaff S, Benn C, Brough L. 2021. Use of Iodine Supplements by Breastfeeding Mothers Is Associated with Better Maternal and Infant Iodine Status. *Biol Trace Elem Res.*199(8):2893-2903.

Johner SA, Shi L, Remer T. 2010. Higher urine volume results in additional renal iodine loss. Thyroid. 20(12):1391-7. doi: 10.1089/thy.2010.0161. Epub 2010 Oct 29. PMID: 21034227.

Johnson LA, Ford HC, Doran JM, Richardson VF. A survey of the iodide concentration of human milk. NZ Med J 1990;103:393-4

Jones E, McLean R, Davies B, Hawkins R, Meiklejohn E, Ma ZF, Skeaff S. Adequate Iodine Status in New Zealand School Children Post-Fortification of Bread with Iodised Salt. Nutrients. 2016 May 16;8(5):298. doi: 10.3390/nu8050298. PMID: 27196925; PMCID: PMC4882711.

Kaplan MM, 1992. Monitoring thyroxine treatment during pregnancy. Thyroid, 2, 147-152.

Katagiri R, Yuan X, Kobayashi S, Sasaki S. Effect of excess iodine intake on thyroid diseases in different populations: a systematic review and meta-analyses including observational studies. PLoS One 2017; 12(3): e0173722

Kent J, Mitoulas L, Cregan M, Ramsay D, Doherty D, Hartmann P. Volume and Frequency of Breastfeedings and Fat Content of Breast Milk Throughout the Day. Pediatrics. 2006 117 (3): e387-e395.

Konno N, Yuri K, Miura K, Kumagai M, Murakami S. 1993. Clinical evaluation of the iodide/creatinine ratio of casual urine samples as an index of daily iodide excretion in a population study. *Endocr J.* 40:163-9.

Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B, Perrild H. 2000. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys?

Evaluation of three estimates of iodine excretion based on causal urine samples and comparison to 24 h values. *Eur J Clin Nutr.*54:361-3.

Knudsen N, Bülow I, Laurberg P, Ovesen L, Perrild H, Jørgensen T. Association of Tobacco Smoking With Goiter in a Low-lodine-Intake Area. *Arch Intern Med.* 2002;162(4):439-443. doi:10.1001/archinte.162.4.439

Kohrle, J. (1999). The trace element selenium and the thyroid gland. Biochimie. 81:527-533.

König F, Andersson M, Hotz K, Aeberli I, Zimmermann MB. 2011. Ten Repeat Collections for Urinary Iodine from Spot Samples or 24-Hour Samples Are Needed to Reliably Estimate Individual Iodine Status in Women123, *The Journal of Nutrition*, 141 (11). Pp. 2049-2054,

Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW 3rd, Lu Z, Jonsson M, Kloo L. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angewandte Chemie (Internation ed. In English) 2011;50(49):11598-11620.

Laaksonen MA, MacInnis RJ, Canfell K, et al. Thyroid cancers potentially preventable by reducing overweight and obesity in Australia: A pooled cohort study. *Int. J. Cancer.* 2022; 150(8): 1281-1290. doi:10.1002/ijc.33889

Lee JH, Hwang Y, Song RY, Yi JW, Yu HW, Kim SJ, et al. Relationship between iodine levels and papillary thyroid carcinoma: a systematic review and meta-analysis. Head Neck 2017; 39(8): 1711-18. doi: 10.1002/hed.24797

Leung AM. What's the best measure of population iodine status? It's not a simple answer,

The American Journal of Clinical Nutrition, Volume 110, Issue 4,2019, pp. 797-798, doi: 10.1093/ajcn/nqz185.Ma ZF,

Li M, and Eastman C J. Neonatal TSH screening: is it a sensitive and reliable tool for monitoring iodine status in populations? Best Practice & Research Clinical Endocrinology and Metabolism, 2010. Vol 24, pp. 63-75.

Li, F., Wan, S., Zhang, L. et al. A Meta-Analysis of the Effect of Iodine Excess on the Intellectual Development of Children in Areas with High Iodine Levels in their Drinking Water. Biol Trace Elem Res 200, 1580-1590 (2022). https://doi.org/10.1007/s12011-021-02801-3

Lisco G, De Tullio A, Giagulli VA, De Pergola G, Triggiani V. 2020. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients. Jun 4;12(6):1669. doi: 10.3390/nu12061669.. PMID: 32512711

Liu S, Sharp A, Villanueva E, Ma ZF. Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review. Nutrients. 2022 Apr 19;14(9):1691. doi: 10.3390/nu14091691. PMID: 35565659; PMCID: PMC9104537.

Lucas CJ, Charlton KE, Brown L, Brock E and Cummins L. Antenatal shared care: Are pregnant women being adequately informed about iodine and nutritional supplementation?. Aust N Z J Obstet Gynaecol, 2014, 54: 515-521. https://doi.org/10.1111/ajo.12239

Lundquist H, Hess J, Comeau M. Slavin J. 2024. Cow milk is an important source of iodine for prenatal health, and switching to plant-based milk can lead to iodine insufficiencies, *JDS Communications*, *5* (3), pp. 181-184.

Ma ZF, Venn BJ, Manning PJ, Cameron CM, Skeaff SA. The sensitivity and specificity of thyroglobulin concentration using repeated measures of urinary iodine excretion. Eur J Nutr 2018; 57(4): 1313-20. doi: 10.1007/s00394-017-1410-6

Machamba AAL, Azevedo FM, Fracalossi KO, do C C Franceschini S. Effect of iodine supplementation in pregnancy on neurocognitive development on offspring in iodine deficiency areas: a systematic review. Arch Endocrinol Metab. 2021 Jun 29;65(3):352-367. doi: 10.20945/2359-3997000000376. PMID: 34191411; PMCID: PMC10065350.

Mackerras DE, Singh GR, Eastman CJ. Iodine status of Aboriginal teenagers in the Darwin region before mandatory iodine fortification of bread. Med J Aust. 2011 Feb 7;194(3):126-30. doi: 10.5694/j.1326-5377.2011.tb04194.x. PMID: 21299486.

Magri F, Zerbini F, Gaiti M, Capelli V, Croce L, Bini S, Rigamonti AE, Fiorini G, Cella SG, Chiovato L. Poverty and immigration as a barrier to iodine intake and maternal adherence to iodine supplementation. J Endocrinol Invest. 2019 Apr;42(4):435-442

Malek L, Umberger W, Makrides M, Zhou SJ. Poor adherence to folic acid and iodine supplement recommendations in preconception and pregnancy: a cross-sectional analysis. Aust N Z J Public Health. 2016 Oct;40(5):424-429. doi: 10.1111/1753-6405.12552. Epub 2016 Aug 14. PMID: 27523027.

Malvaux P, Beckers C, de Visscher M. 1969. Iodine balance studies in nongoitrous children and in adolescents on low iodine intake. J Clin Endocrinol Metab 29:79-84.

Mammen JSR, Cappola AR. 2021 Autoimmune Thyroid Disease in Women. *JAMA*. 325(23):2392-2393. doi: 10.1001/jama.2020.22196. PMID: 33938930; PMCID: PMC10071442.

Mandel SJ, Larsen PR, Seely EW and Brent GA, 1990. Increased need for thyroxine during pregnancy in women with primary hypothyroidism. New England Journal of Medicine, 323, 91-96.

Martin JC, Savige GS and Mitchell EKL. Health knowledge and iodine intake in pregnancy. *Aust N Z J Obstet Gynaecol*, 2014. 54: 312-316. https://doi.org/10.1111/ajo.12201

McDonnell CM, Harris M and Zacharin MR. 2003. Iodine deficiency and goitre in schoolchildren in Melbourne, 2001. *Med J Aust* 178 (4): 159-162.

Meredith I, Sarfati D, Atkinson J, Blakely T. 2014. Thyroid cancer in Pacific women in New Zealand. NZMJ 6 June 2014, Vol 127 No 1395; ISSN 1175 8716

Milakovic M, Berg G, Eggertsen R, Nystrom E, Olsson A, Larsson A and Hansson M, 2006. Determination of intrathyroidal iodine by X-ray fluorescence analysis in 60- to 65-year olds living in an iodine-sufficient area. Journal of Internal Medicine, 260, 69-75.

Miller, J. C., MacDonell, S. O., Gray, A. R., Reid, M. R., Barr, D. J., Thomson, C. D., & Houghton, L. A. (2016). Iodine Status of New Zealand Elderly Residents in Long-Term Residential Care. *Nutrients*, 8(8), 445. https://doi.org/10.3390/nu8080445

Miyai K, Tokushige T, Kondo M. 2008. Suppression of thyroid function during ingestion of seaweed "Kombu" (Laminaria japonoca) in normal Japanese adults. *Endocrine Journal*, 55(6):1103-1108.

Moleti M, Di Bella B, Giorgianni G, Mancuso A, De Vivo A, Alibrandi A, Trimarchi F, Vermiglio F. 2011. Maternal thyroid function in different conditions of iodine nutrition in pregnant women exposed to mild-moderate iodine deficiency: an observational study. Clin Endocrinol (Oxf). 74(6):762-8.

Monaghan AM, Mulhern MS, McSorley EM, Strain JJ, Dyer M, van Wijngaarden E, Yeates AJ. Associations between maternal urinary iodine assessment, dietary iodine intakes and neurodevelopmental outcomes in the child: a systematic review. Thyroid Res. 2021 Jun 7;14(1):14. doi: 10.1186/s13044-021-00105-1. PMID: 34099006; PMCID: PMC8182912.

Moreno-Reyes R, Carpentier YA, Macours P, Gulbis B, Corvilain B, Glinoer D, Goldman S. 2011. Seasons but not ethnicity influence urinary iodine concentrations in Belgian adults. *Eur J Nutr.*, 50, pp. 285-290

Mridha MK, Matias SL, Paul RR, Hussain S, Khan MSA, Siddiqui Z, Ullah B, Sarker M, Hossain M, Young RT, Arnold CD, Dewey KG. 2017 Daily consumption of lipid-based nutrient supplements containing 250 mug iodine does not increase urinary iodine concentrations in pregnant and postpartum women in Bangladesh. *J Nutr* 147:1586-1592.

Nagataki S, Shizume K, Nakao K. 1967. Thyroid function in chronic excess iodide ingestion: comparison of thyroidal absolute iodine uptake and degradation of thyroxine in euthyroid Japanese subjects. *Journal of Clinical and Endocrinology and Metabolism*, 27(5):638-647.

National Health and Medical Research Council (NHMRC), 2006. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Available from: https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes

National Health and Medical Research Council (NHMRC), 2010. Public Statement: Iodine supplementation for Pregnant and Breastfeeding Women, available from: https://www.nhmrc.gov.au/about-us/publications/iodine-supplementation-pregnant-and-breastfeeding-women (accessed: 30 July 2024)

National Health and Medical Research Council (NHMRC). 2011 [Report prepared by Byron A, Baghurst K, Cobiac L, Baghurst P, Magarey A on behalf of Dietitians Association of Australia]. 2008. A modelling system to inform the revision of the Australian Guide to Healthy Eating. Available from:

https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55c_dietary_guidelines_food_modelling.pdf [Accessed 2 June 2025]

National Health and Medical Research Council (NHMRC). 2025 [in publication]. Methodological Framework for the Review of Nutrient Reference Values (Version 3.5, October 2025). NHMRC, Canberra ACT.

Nazarpour S, Ramezani Tehrani F, Behboudi-Gandevani S, Bidhendi Yarandi R, Azizi F. 2020. Maternal Urinary Iodine Concentration and Pregnancy Outcomes in Euthyroid Pregnant Women: a Systematic Review and Meta-analysis. Biol Trace Elem Res. 197(2):411-420.

Nazeri P, Shab-Bidar S, Pearce EN, Shariat M. 2020a. Thyroglobulin Concentration and Maternal Iodine Status During Pregnancy: A Systematic Review and Meta-Analysis. *Thyroid.* May;30(5):767-779. doi: 10.1089/thy.2019.0712.

Nazeri P, Shab-Bidar S, Pearce EN, Shariat M. 2020b Do maternal urinary iodine concentration or thyroid hormones within the normal range during pregnancy affect growth parameters at birth? A systematic review and meta-analysis. *Nutr Rev.* Sep 1;78(9):747-763. doi: 10.1093/nutrit/nuz105. PMID: 31923312.

Nazeri P, Shariat M, Azizi F. 2021. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: a systematic review and meta-analysis of trials over the past 3 decades. Eur J Endocrinol. 184(1):91-106.

Nazeri P, Pearce EN, Farrokhzad N, Baghalha F, Shariat M, Azizi F. 2024. Do Postpartum Maternal Iodine Status or Supplementation Affect Thyroid Function After Delivery? A Systematic Review and Meta-Analysis. Biol Trace Elem Res. 202(8):3425-3441.

New Zealand Ministry of Health (NZ MoH), 2020. Biomedical Data Explorer 2014/15: New Zealand Health Survey - Iodine data files, available from: minhealthnz.shinyapps.io/nz-health-survey-2014-15-biomedical/ (accessed 30 July 2024)

New Zealand Ministry of Primary Industries (NZ MPI), 2014. Update report on the dietary iodine intake of New Zealand children following fortification of bread with iodine. MPI Technical Paper No. 2014/21. Available from:

https://www.mpi.govt.nz/dmsdocument/4596-Update-report-on-the-dietary-iodine-intake-of-New-Zealand-children-following-fortification-of-bread-with-iodine-Ministry-for-Primary-Industries-July-2014 (accessed 30 July 2024)

Noble KA, Chan HK, Kavanagh ON. Meta-analysis guided development of a standard artificial urine. *European Journal of Pharmaceutics and Biopharmaceutics*, 2024 May Volume 198

Nolan, M; Gorsuch, C; Graham, A; Hynes, Kristen; Reardon, M. 2022. Barriers and enablers to maternal iodine supplement use in Tasmania. University Of Tasmania. Report. https://figshare.utas.edu.au/articles/report/Barriers and enablers to maternal iodine supplement use in Tasm (accessed 12 August 2025)

Oblak, A., Hribar, M., Hristov, H. et. al. 2024 Interpreting urinary iodine concentration: effects of urine dilution and collection timing. *Eur J Clin Nutr* 78, 1105-1110

O'Leary PC, Feddema PH, Michelangeli VP, Leedman PJ, Chew GT, Knuiman M, Kaye J, Walsh JP. Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin Endocrinol (Oxf). 2006 Jan;64(1):97-104. doi: 10.1111/j.1365-2265.2005.02424.x. PMID: 16402936.

O'Kane SM, Mulhern MS, Pourshahidi LK, Strain JJ, Yeates AJ. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev. 2018 Jun 1;76(6):418-431. doi: 10.1093/nutrit/nuy008. PMID: 29596650.

Pedersen KM, Laurberg P, Iversen E, Knudsen PR, Gregersen HE, Rasmussen OS, Larsen KR, Eriksen GM, Johannesen PL. 1993. Amelioration of some pregnancy-associated variations in thyroid function by iodine supplementation. *J Clin Endocrinol Metab* 77:1078-1083.

Pandeya, N., McLeod, D.S., Balasubramaniam, K., Baade, P.D., Youl, P.H., Bain, C.J., Allison, R. and Jordan, S.J. (2016), Increasing thyroid cancer incidence in Queensland, Australia 1982-2008 - true increase or overdiagnosis?. Clin Endocrinol, 84: 257-264. https://doi.org/10.1111/cen.12724

Paul T, Meyers B, Witorsch RJ, Pino S, Chipkin S, Ingbar SH, Braverman LE. 1988. The effect of small increases in dietary iodine on thyroid function in euthyroid subjects. *Metabolism*. 37(2):121-4

Peniamina R, Skeaff S, Haszard JJ, McLean R. Comparison of 24-h Diet Records, 24-h Urine, and Duplicate Diets for Estimating Dietary Intakes of Potassium, Sodium, and Iodine in Children. *Nutrients*. 2019; 11(12):2927. https://doi.org/10.3390/nu11122927.

Penrose B, Magor E, Wilson M, Wong H, Cresswell T, Sánchez-Palacios JT, Kaestli M, Bell R. Investigating environmental and geographical factors affecting iodine concentrations in Australian wheat (Triticum aestivum L.) grain. Science of The Total Environment, Volume 956, 2024, 177160, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2024.177160.

Rapata M, Cunningham W, Harwood M, Niederer R. Te hauora karu o te iwi Māori: A comprehensive review of Māori eye health in Aotearoa/New Zealand. Clin Exp Ophthalmol. 2023;51(7):714-727.

Rasmussen LB, Ovesen L, Christiansen E 1999. Day-to-day and within-day variation in urinary iodine excretion. *Eur J Clin Nutr.*, 53 ,pp. 401-407

Razvi S, Weaver JU, Vanderpump MP, Pearce SH. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J Clin Endocrinol Metab. 2010 Apr;95(4):1734-40

Reynolds A and Skeaff SA. Maternal adherence with recommendations for folic acid and iodine supplements: A cross-sectional survey. *Aust N Z Obstet Gynaecol,* 2018. Vol 58, pp. 125-127.

Ristić-Medić D, Piskackova Z, Hooper L, Ruprich J, Casgrain A, Ashton K, Pavlovic M, Glibetic M. 2009. Methods of assessment of iodine status in humans: a systematic review. *American Journal of Clinical Nutrition*, 89:2052S-2069S.

Ristić-Medić D, Novaković R, Glibetić M, Gurinović M. 2013. EURRECA—Estimating Iodine Requirements for Deriving Dietary Reference Values, *Critical Reviews in Food Science and Nutrition*, 53:10, 1051-1063,

Sang Z, Wang PP, Yao Z, Shen J, Halfyard B, Tan L, Zhao N, Wu Y, Gao S, Tan J, Liu J, Chen Z, Zhang W. Exploration of the safe upper level of iodine intake in euthyroid Chinese adults: a randomized double-blind trial. Am J Clin Nutr. 2012 Feb;95(2):367-73.

Semba RD, Delange F. Iodine in human milk: perspectives for infant health. Nutr Rev 2001; 59(8 Pt 1): 269-78.

Shields B, Hill A, Bilous M, Knight B, Hattersley AT, Bilous RW, Vaidya B. Cigarette smoking during pregnancy is associated with alterations in maternal and fetal thyroid function. J Clin Endocrinol Metab. 2009 Feb;94(2):570-4. doi: 10.1210/jc.2008-0380. Epub 2008 Nov 18. PMID: 19017761.

Singh, G.R., Davison, B., Ma, G.Y., Eastman, C.J., Mackerras D.E. 2019. Iodine status of Indigenous and non-Indigenous young adults in the Top End, before and after mandatory forticiation. MJA. Med J Aust 2019; 210 (3): 121-125. || doi: 10.5694/mja2.12031

Skeaff SA, Thomson CD, Wilson N, Parnell WR. 2012. A comprehensive assessment of urinary iodine concentration and thyroid hormones in New Zealand schoolchildren: a cross-sectional study. *Nutr J.* 11:31. doi: 10.1186/1475-2891-11-31.

Skeaff SA, Lonsdale-Cooper E. Mandatory fortification of bread with iodised salt modestly improves iodine status in schoolchildren. Br J Nutr. 2013 Mar 28;109(6):1109-13. doi: 10.1017/S0007114512003236. Epub 2012 Jul 31. PMID: 22849786.

Sohn SY, Inoue K, Rhee CM, Leung AM. Risks of Iodine Excess. Endocr Rev. 2024 Nov 22;45(6):858-879. doi: 10.1210/endrev/bnae019. PMID: 38870258.

Stilwell G, Reynolds PJ, Parameswaran V, Blizzard L, Greenaway TM, Burgess JR. 2008 The Influence of Gestational Stage on Urinary Iodine Excretion in Pregnancy, *The Journal of Clinical Endocrinology & Metabolism*, Vol 93 (5), pp. 1737-1742,

Stricker R, Echenard M, Eberhart R, et al. Evaluation of maternal thyroid function during pregnancy: the importance of using gestational age-specific reference intervals. Eur J Endocrinol 2007;157:509-14.

Sullivan TR, Best KP, Gould J, Zhou SJ, Makrides M, Green TJ. 2024. Too Much Too Little: Clarifying the Relationship Between Maternal Iodine Intake and Neurodevelopmental Outcomes, *The Journal of Nutrition*, 154 (1): 185-190

https://doi.org/10.1210/jc.2007-1715 Tamatea, J.A., Reid, P., Conaglen, J.V., Elston, M.S. 2020. Thyrotoxicosis in an Indigenous New Zealand Population - a Prospective Observational Study, *Journal of the Endocrine Society*, Volume 4, Issue 3, March 2020, bvaa002, https://doi.org/10.1210/jendso/bvaa002

Tan L, Tian X, Wang W, Guo X, Sang Z, Li X, Zhang P, Sun Y, Tang C, Xu Z, Shen J, Zhang W. Exploration of the appropriate recommended nutrient intake of iodine in healthy Chinese women: an iodine balance experiment. Br J Nutr. 2019 Mar 14;121(5):519-528.

Te Aho o Te Kahu, Cancer Control Agency [Internet]. Cancer Types - Thyroid Cancer. Available from: https://teaho.govt.nz/cancer/types/thyroid (Accessed 20 January 2025)

Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, Jin Y, Yu X, Fan C, Chong W, Yang F, Dai H, Yu Y, Li J, Chen Y, Zhao D, Shi X, Hu F, Mao J, Gu X, Yang R, Tong Y, Wang W, Gao T, Li C. Effect of iodine intake on thyroid diseases in China. N Engl J Med. 2006 Jun 29;354(26):2783-93. doi: 10.1056/NEJMoa054022. PMID: 16807415.

Teng X, Shan Z, Chen Y, Lai Y, Yu J, Shan L, Bai X, Li Y, Li N, Li Z, Wang S, Xing Q, Xue H, Zhu L, Hou X, Fan, Teng W. More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: a cross-sectional study based on two Chinese communities with different iodine intake levels. European Journal of Endocrinology 2011;164:943-950.

Thomson CD, Smith TE, Butler KA, Packer MA. 1996. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med Biol. 10(4):214-22. doi: 10.1016/S0946-672X(96)80038-1. PMID: 9021672.)

Thomson CD. Selenium and iodine intakes and status in New Zealand and Australia. 2004. Br J Nutr. 91(5):661-72. doi: 10.1079/BJN20041110. PMID: 15137917.

Thomson, C., Woodruffe, S., Colls, A. *et al.* 2001. Urinary iodine and thyroid status of New Zealand residents. Eur J Clin Nutr 55, 387-392 https://doi.org/10.1038/sj.ejcn.1601170

Tovar E, Maisterrena JA and Chavez A, 1969. Iodine nutrition levels of school children in rural Mexico. In: Endemic Goitre. PAHO Scientific Publication, No 193. Ed Stanbury JB. Pan American Health Organization (PAHO), Washington D. C., USA, 411-415.

Ubom GA, 1991. The goitre-soil-water-diet relationship: case study in Plateau State, Nigeria. Science of the Total Environment, 107, 1-11.

United Kingdom Scientific Advisory Committee on Nutrition (UK SACN), 2014. SACN Statement on Iodine and Health.

https://assets.publishing.service.gov.uk/media/5a7e469ced915d74e62253f3/SACN_lodin_e_and_Health_2014.pdf (accessed 22 July 2024).

United Kingdom Food Standards Agency (FSA) Committee on Toxicity (COT), 2022. Statement on the potential effects that excess iodine intake may have during preconception, pregnancy and lactation. Available from:

https://cot.food.gov.uk/Statement%20on%20the%20potential%20effects%20that%20excess%20iodine%20intake%20may%20have%20during%20preconception%2C%20pregnancy%20and%20lactation#introduction (accessed 10 June 2025).

United States Institute of Medicine (US IoM), 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington DC, USA, 797 pp.

Vanderpas, 2003. Thyroid Hormones in *Encyclopedia of Food Sciences and Nutrition* (Second Edition), (Ed. Benjamin Caballero), Academic Press. Pp 3140-3145. https://doi.org/10.1016/B0-12-227055-X/00602-7

Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Carlé A, Pedersen IB, Rasmussen LB, Ovesen L, Jørgensen T 2009.. Thyroglobulin as a marker of iodine nutrition status in the general population. European Journal of Endocrinology, 161(3):475-481.

VKM. Henjum S. Brantsæter AL, Holvik K, Lillegaard ITL, Mangschou B, Parr CL, Starrfelt J, Stea TH, et al. 2020. Benefit and risk assessment of iodization of household salt and salt used in bread and bakery products. Scientific opinion of the Panel on Nutrition, Dietetic Products, Novel Food and Allergy of the Norwegian Scientific Committee for Food and Environment. VKM report 2020:05, ISBN: 978-82-978-82-9259-343-4, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway

Wang B, He W, Li W, Jia X, Yao Q, Song R, Qin Q, Zhang J, U-shaped relationship between iodine status and thyroid autoimmunity risk in adults, *European Journal of Endocrinology*, Volume 181, Issue 3, Sep 2019, Pages 255-266, https://doi.org/10.1530/EJE-19-0212

Wassie MM, Middleton P, Zhou SJ. 2019. Agreement between markers of population iodine status in classifying iodine status of populations: a systematic review, *Am J Clin Nutr.* 110 (4): 949-9558. doi: 10.1093/ajcn/nqz118

Whitbread JS, Murphy KJ, Clifton PM, Keogh JB. Iodine Excretion and Intake in Women of Reproductive Age in South Australia Eating Plant-Based and Omnivore Diets: A Pilot Study. Int J Environ Res Public Health. 2021 Mar 29;18(7):3547. doi: 10.3390/ijerph18073547. PMID: 33805502; PMCID: PMC8037805.

Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP. Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 2016; 26(11): 1541-52. doi: 10.1089/thy.2016.0100

World Cancer Research Fund; American Institute for Cancer Research, 2018. Continuous update project expert report 2018 - Judging the evidence [Internet]. Available from: https://www.wcrf.org/wp-content/uploads/2024/11/judging-the-evidence.pdf

World Health Organization (WHO) and Food and Agriculture Organization (FAO) of the United Nations (UN), 2004. Vitamin and mineral requirements in human nutrition. Second edition. Joint FAO/WHO Expert Consultation Report. Geneva: World Health Organisation.

World Health Organization (WHO). 2007. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd ed. World Health Organization. https://iris.who.int/handle/10665/43781 (Accessed 30 July 2024)

World Health Organization (WHO). 2013. Urinary iodine concentrations for determining iodine status in populations, Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization https://www.who.int/publications/i/item/WHO-NMH-NHD-EPG-13.1 (Accessed 31 July 2024)

World Health Organization (WHO). 2014. Goitre as a determinant of the prevalence and severity of iodine deficiency disorders in populations. World Health Organization, Vitamin and Mineral Nutrition Information System. WHO/NMH/NHD/EPG/14.5. https://iris.who.int/bitstream/handle/10665/133706/WHO_NMH_NHD_EPG_14.5_eng.pdf. Accessed 6 December 2024.

Yang, F. Y., Tang, B. D., Niu, C. L., et al. (1997). A study for endemic goiter control with combined iodine and selenium supplementation. *Chin. J. Contr. End. Dis.* 16:214-218.

Yassa L, Marqusee E, Fawcett R and Alexander EK, 2010. Thyroid hormone early adjustment in pregnancy (the THERAPY) trial. Journal of Clinical Endocrinology and Metabolism, 95, 3234-3241.

Zhang X, Zhang F, Li Q, Aihaiti R, Feng C, Chen D, Zhao X, Teng W. The relationship between urinary iodine concentration and papillary thyroid cancer: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022 Oct 31;13:1049423. doi: 10.3389/fendo.2022.1049423. PMID: 36387866; PMCID: PMC9659619.

Zhou SJ, Condo D, Ryan P, Skeaff SA, Howell S, Anderson PJ, McPhee AJ, Makrides M. 2019. Association Between Maternal Iodine Intake in Pregnancy and Childhood Neurodevelopment at Age 18 Months, *American Journal of Epidemiology*, Volume 188, Issue 2, pp. 332-338.

Zimmermann, M., Adou, P., Torresani, T., Zeder, C. and Hurrell, R. (2000). Persistence of goiter despite oral iodine supplementation in goitrous children with iron deficiency anemia in Cote d'Ivoire. *Am. J. Clin. Nutr.* 71: 88-93.

Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet 2008; 372(9645): 1251-62.

Zimmermann MB. Iodine and iodine deficiency disorders. In: Erdman JW, Macdonald LA, Zeisel SH, eds. Present Knowledge in Nutrition 10th Edition. Oxford: Wiley-Blackwell, 2012:554-567.

Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res 2015; 8: 8. doi: 10.1186/s13044-015-0020-8

Appendix A - Methods for identifying evidence

Consistent with the Methodological Framework (NHMRC 2025), several approaches were adopted to identify relevant evidence for physiological requirements of iodine, and explore the relationship between iodine intake/status and health outcomes. This included:

- Extracting evidence from international guidance and advice including:
 - o reviews commissioned or conducted by comparable international bodies for the purposes of establishing iodine nutrient reference values
 - o other reports published by key international bodies (e.g. the WHO) relevant to establishing iodine nutrient reference values
- Systematic reviews published within the previous 10 years (with an emphasis on high quality, more recent systematic reviews)
- A commissioned review of primary studies for targeted populations, exposures and outcomes
- Primary evidence or data relevant to the Australian and New Zealand context

International guidance and advice

The following international reports were reviewed, and summarised or relevant evidence extracted in the Evidence Summary Report:

- US Institutes of Medicine (US IoM) Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc (US IoM 2001)
- Nordic Nutrition Recommendations
 - lodine: a scoping review for Nordic Nutrition Recommendations 2023 (Gunnarsdóttir and Brantsæter 2023)
 - o Nordic Nutrition Recommendations 2023 (Blomhoff et al. 2023)
- European Food Safety Authority
 - Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine (EFSA 2003)
 - o Scientific Opinion on Dietary Reference Values for Iodine (EFSA 2014)
 - Scientific Report on the dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population (EFSA 2023)
- EURRECA Estimating Iodine Requirements for Deriving Dietary Reference Values (Ristić-Medić 2013)
- UK SACN
 - SACN Statement on Iodine and Health (UK SACN 2014)
 - Statement on the potential effects that excess iodine intake may have during preconception, pregnancy and lactation (UK SACN UK 2022)
- WHO
 - o Vitamin and mineral requirements in human nutrition (WHO & FAO 2004) -
 - Urinary iodine concentrations for determining iodine status in populations (WHO 2013)
- Chinese Nutrition Society:
 - Global Perspectives on China's Iodine Dietary Reference Intakes: Revisions, Public Health Implications, and Future Strategies (Guo et al 2025)

Systematic reviews

We sought recent, high quality systematic reviews that examined one or more of the following:

- iodine requirements to maintain physiological function in humans
- the relationship between iodine intake, status and health outcomes
- related characteristics relevant to NRV derivation for the Australian and New Zealand population, such as reviews exploring biomarkers of iodine intake/status, iodine content in food or water, bioavailability or interactions with other nutrients/compounds.

Reviews not generalisable to the Australian and New Zealand context - such as those focused on incomparable, specific regional area/s or severely deficient populations - were excluded.

Eligible systematic reviews were identified by searching databases (Epistemonios, PubMed, Cochrane Database of Systematic Reviews) and via reference list searching of key international guidance published since 2015. Search parameters are documented in Table 18.

The methodological rigour and reporting quality of eligible systematic reviews was evaluated by KSR Evidence using the Risk of Bias in Systematic Reviews (ROBIS) tool (Whiting et al. 2016). KSR Evidence also extracted key characteristics of reviews. Extracted data and risk of bias assessments are presented in Appendix C.

Table 18. Searches undertaken to identify relevant systematic reviews

Method	Search parameters	No. records screened
Epistemonikos database	Keyword (Ti/Abs): iodine Category: systematic reviews Date range: 1 Jan 2015 to 9 Sep 2025	583
PubMed database	((iodine[Mesh]) AND ("systematic review"[pt])) NOT (radioiodine[ti] OR chlorhexidine[ti] OR radioactive[ti] OR contrast[ti]) Date range: 1 Jan 2015 to 4 September 2025	140
Cochrane Database of Systematic Reviews	e MeSH descriptor: [lodine] in all MeSH products Dates: 01/01/2015 - 09/09/2025	16

Method	Search parameters	No. records screened
Reference list searching	 Nordic Nutrition Recommendations: Gunnarsdóttir and Brantsæter 2023 - Iodine: a scoping review for Nordic Nutrition Recommendations 2023 Blomhoff et al 2023 - Nordic Nutrition Recommendations 2023 UK Food Standards Agency: Committee on Toxicity (2022) - Statement on the potential effects that excess iodine intake may have during preconception, pregnancy and lactation. Chinese Nutrition Society: Guo et al (2025) - Global Perspectives on China's lodine Dietary Reference Intakes: Revisions, Public Health Implications, and Future Strategies 	N/A
	 European Food Safety Authority: EFSA (2023) - Scientific Report on the dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population 	

Primary studies/data

Evidence scoping for priority PECO criteria

NHMRC commissioned researchers from the Institute for Physical Activity and Nutrition at Deakin University to undertake a review of primary studies to inform decisions about the update of iodine NRVs. The research team comprised Professor Judi Porter, Associate Professors Susan Torres, Ewa Szymlek-Gay, Kristy Bolton, and Katherine Livingstone, Dr Miaobing Zheng, and Dr Gavin Abbott.

The evidence review employed systematic searches to identify primary studies on the relationship between iodine intake / status and health for select, priority populations, exposures and outcomes. The inclusion/exclusion criteria for the review are specified in Table 18.

Balance studies that measured total intake and losses under controlled conditions were also sought, where they:

- were published since 2000 (to complement evidence from balance studies identified in previous reviews)
- measured intake from all sources (including dietary, supplements, water and medications)
- measured losses via a minimum of three routes (urinary, faecal, sweat, dermal).

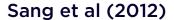
Key characteristics of eligible studies were extracted and risk of bias assessed using one of the following tools:

- RCTs: Cochrane Risk of Bias tool v.2 (ROB-2)
- NRSIs: Cochrane Risk of Bias in Non-randomised Studies of Interventions tool (ROBINS-I)
- Observational studies: Risk of blas for Nutrition Observational Studies tool, adapted from ROBINS-I by the US Nutrition Evidence Systematic Review team to assess risk of bias in observational studies in nutrition (RoB-NObs).

The key characteristics and risk of bias of primary studies are presented in Appendix D, adapted from data provided by the IPAN evidence review contractors.

Table 19. Inclusion criteria (Source: NHMRC commissioned evidence evaluation, conducted by Deakin University IPAN)

	Intervention studies	Observational studies					
Study designs:	 Randomised controlled trials (RCTs) with parallel, crossover or 2 x 2 factorial design Quasi-randomised studies 	Prospective cohort studiesCase-control studies					
Intervention / Exposure and	Known iodine dose either through supplementation or iodine enriched food/drink or placebo	lodine intake from all sources (including dietary, supplements, water and medications), measured as urinary iodine excretion (µg/day), concentration (µg/L), or µg iodine/g creatinine ratio					
Comparators:	One or more comparison arm/s with different intake/s of iodine	Different level of iodine exposure					
Populations:	Only studies conducted in humans involving free-living, population-based recruitment, involving groups not specifically recruited on the basis of health status/condition, were included. Population groups included: Adults (including older adults aged 70+ years) Pregnant women (limited to studies published since 2016) Children and adolescents (aged 1 to 18 years)						
Outcomes:	 All populations: lodine status, measured as UIE (μg/day), UIC (μg/L), μ Elevated TSH Thyroid function, as measured by free thyroid hormon Thyroid volume, as measured by ultrasound Goitre rate, confirmed by ultrasound or palpation Thyroid autoimmunity Thyroid cancer Additional outcomes - children and adolescents or during global need to be a company of the company of t	e T4, and/or thyroglobulin (TG) pregnancy: eurocognitive development, motor development, mental					
	Additional outcomes - pregnancy only: Pregnancy and obstetric outcomes, measured as stillbirth, pre-term birth and neonatal TSH (pregnant people only)						
	rregnancy and obstetric outcomes, measured as stillbirth,	pre-term birth and neonatal 15h (pregnant people only)					


Australian and New Zealand contextual evidence

To supplement the primary studies and systematic reviews obtained, primary studies and data specific to the Australian and New Zealand context were sought. This included primary studies conducted in Australia or New Zealand, or population or modeling data published by the Australian Bureau of Statistics, Australian Institute of Health and Welfare, New Zealand Ministry of Health or Food Standards Australia New Zealand.

Relevant literature was obtained via targeted searches of databases, government websites, and grey literature searches.

Appendix B - Supplementary analyses

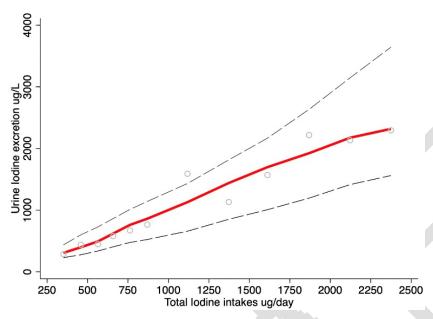


Figure 1. Mean urinary lodine excretion with 25th/75th percentiles and total lodine intakes from 256 euthyroid adults after being randomized to one of twelve lodine supplementation levels (0-2000ug) for four weeks.

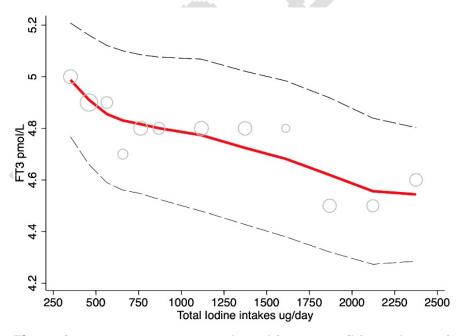


Figure 2. Mean FT3 concentration with 95% confidence intervals and total lodine intakes from 256 euthyroid adults after being randomized to one of twelve lodine supplementation levels (0-2000ug) for four weeks.

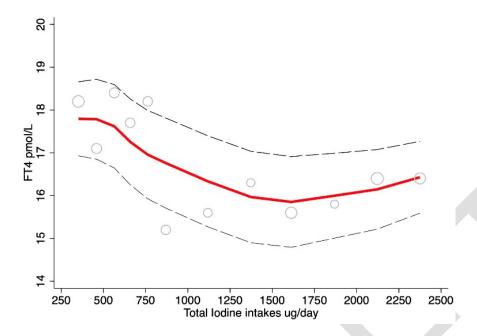


Figure 3. Mean FT4 concentration with 95% confidence intervals and total lodine intakes from 256 euthyroid adults after being randomized to one of twelve lodine supplementation levels (0-2000ug) for four weeks.

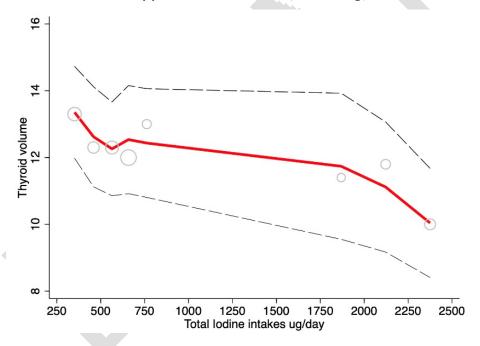


Figure 6. Mean thyroid volume (ml) with 95% confidence intervals and total lodine intakes from 179 euthyroid adults after being randomized to one of eight lodine supplementation levels (0-2000ug) for four weeks.

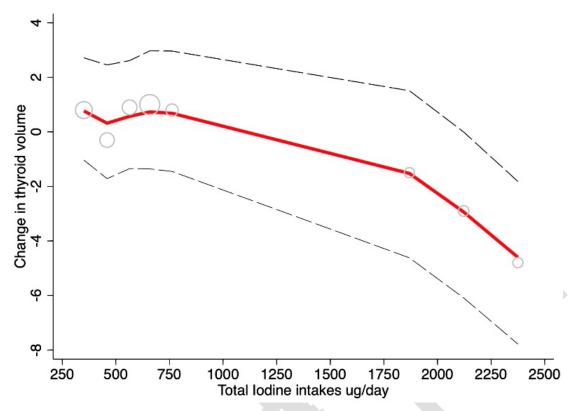


Figure 7. Change in thyroid volume with 95% confidence intervals and total lodine intakes over four weeks in 179 euthyroid adults randomized to one of eight lodine supplementation levels (0-2000ug

Appendix C - Systematic reviews

Characteristics of systematic reviews

Table 20. Characteristics of Systematic Reviews (Source: KSR Evidence, with minor adaptations/edits to summarise content where required)

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Aarsland et al 2025	To examine the association between mild-to-moderate iodine deficiency and thyroid hormone function in infants, children, adolescents, adults, pregnant and lactating women.	February 2024	P: The general population, including infants, children, adolescents, adults, pregnant and lactating women. Individuals with pre-existing chronic disease were excluded. I/E/C: Mild-to-moderate iodine deficiency, measured using UIC or UIC:Cr or dietary iodine intake (µg/d) converted to UIC. Compared with adequate status. O: Thyroid function parameters (TSH, FT3, FT4), thyroid dysfunction (hypothyroidism, hyperthyroidism, hypothyroxinaemia, and hyperthyroxinemia). TS: Observational studies. Cross-sectional studies, prospective and retrospective cohort studies, case-control studies.	72 studies (N=293,502 participants)	D1: HIGH D2: UNCLEAR D3: LOW D4: LOW OVERALL: HIGH
Beckford et al 2020	To estimate the average 24-h urine volume measured in healthy children and adolescents and assess its impact on the assessment of iodine status using urinary biomarkers.	October 2018	P: Healthy children and adolescents >1 and ≤19 years of age. I/E/C: 24-hour urine volume of children and adolescents. O: Average daily urinary output of children and adolescents and its impact on the assessment of iodine status using urinary biomarkers. TS: No restrictions on the types of study design eligible. Observational studies.	44 studies (N=7,712 participants; 9538 urine samples)	D1: HIGH D2: HIGH D3: UNCLEAR D4: HIGH OVERALL: HIGH

AUSTRALIA

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Bolfi et al. 2025 To assess whether individual diagnosis of low urinary iodine concentration (UIC) in pregnant women is associated with adverse maternal and	October 30 2023	P: Pregnant women without ethnicity restrictions and without the history of thyroid diseases or other chronic diseases. I/E/C: Mildly deficient pregnant women (UIC <150 µg/L). O: Birth outcomes, maternal thyroid parameters, neonatal thyroid parameters, child neurocognitive development	63 studies (N=65,636 participants)	D1: LOW D2: UNCLEAR D3: LOW D4: LOW OVERALL:	
	neonatal outcomes.		TS: Cohort and analytical cross-sectional studies.		LOW
Businge et al 2021	To assess the iodine nutrition status of pregnant women with and without preeclampsia and the risk of pre-eclampsia due to iodine deficiency.	30 June 2020	P: Pregnant women I/E/C: Insufficient iodine status (UIC <150 μg/L) vs sufficient iodine nutrition status (UIC ≥150 μg/L) during pregnancy. O: Prevalence and incidence rates of pre-eclampsia. TS: Cohort and case-control studies.	5 studies (N=4,404 participants)	D1: LOW D2: UNCLEAR D3: UNCLEAR D4: HIGH OVERALL: HIGH
Candido et al 2023	To assess the effects of iodine supplementation on maternal thyroid hormone concentrations and iodine status during and/or before pregnancy.	July 2023	P: Pregnant women I/E/C: Oral iodine supplementation. O: Iodine status of pregnant women. Urinary Iodine Concentration (UIC), maternal thyroid function, such as Thyroid Stimulating Hormone (TSH); Thyroxine (T4); Thyroglobulin (Tg) concentration; Free Triiodothyronine (FT3); Free Thyroxine (FT4); thyroid volume; and any other relevant thyroid effects. TS: Observational, nonrandomized and/or non-controlled studies, and randomized clinical trials.	11 studies (N=3,071 participants)	D1: HIGH D2: UNCLEAR D3: UNCLEAR D4: HIGH OVERALL: HIGH

Page 86 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Cao et al	To assess the possible	April 2016	P: Not mentioned, but given case-control studies were included	8 studies	D1: HIGH
2017	relationship between iodine intake and		these were patients with or without thyroid cancer.	(N=4,974	D2: HIGH
	thyroid cancer (TC)		I/E/C: lodine intake. Level of fish and shellfish intake.	participants)	D3: HIGH
	risk.		O: Thyroid cancer.		D4: LOW
			TS: Case-control studies		OVERALL: HIGH
Dineva et al	To evaluate effects of	January 2020	P: Pregnant women in areas of mild-to-moderate iodine	37 studies	D1: HIGH
2020	iodine supplementation in mildly-to-moderately	pplementation in (UIC) in the range of 50-149 µg/L. Exclusion: Pregnant women dly-to-moderately eficient pregnant I/E: lodine supplementation during pregnancy in the form of iodised salt, potassium iodide, or other iodine-containing (N=8,133 m studies; 2 children for other iodine-containing for ch	(UIC) in the range of 50-149 μg/L. Exclusion: Pregnant women	(N=8,133 maternal studies; 2,452 children for thyroic function; >150,000 for child neurodevelopment	D2: LOW D3: UNCLEAR
	women on maternal and infant thyroid		I/E: lodine supplementation during pregnancy in the form of iodised salt, potassium jodice, or other jodine-containing		
					HIGH
			TS: Observational studies, non-randomised or uncontrolled intervention studies and randomised controlled trials (RCTs).		

Page 87 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Dineva et al 2023		years), non-pregnant adults up to 65 years (if iodine exposure iodine exposure during childhood). Excluded: Studies measuring development iodine exposure in adults (aged 18 years and over), except if data from children and adults are combined, Pendred syndrom		13 studies (N=2,754 participants)	D1: HIGH D2: LOW D3: LOW D4: LOW OVERALL: HIGH
				TS: All types of study design: Observational studies (including case reports), non-randomised studies of interventions, randomised controlled trials (RCTs).	
2018 br cond tre lad ma int af asses bet	To examine how breast milk iodine concentration (BMIC) trends throughout	east milk iodine 2015 centration (BMIC)	P: Lactating mothers and their infants. Mothers who gave birth prematurely or who had other complicating factors (i.e., malnutrition, disease, inflammation, or smoking) were included. I/E/C: Varying levels of breast milk iodine concentration (BMIC)	14 studies (N=1,122 participants)	D1: LOW D2: HIGH D3: HIGH
	lactation, identify maternal factors or interventions that affect BMIC, and assess the relationship between BMIC and infant iodine status.		at various time points throughout lactation,		D4: HIGH
		affect BMIC, and sess the relationship petween BMIC and	O: infant iodine status. TS: Observational and intervention studies.		OVERALL: HIGH

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Farebrother et al 2018	To assess the effects of iodised salt or iodine supplements compared with placebo or no intervention on child growth outcomes (prenatal, postnatal and during childhood)	·	P: Pregnant women or women of reproductive age, and their infants. Lactating women, infants, and children up to 18 years of age. I/E/C: higher iodine intake (iodine intervention - any form, dose, regimen - including iodised salt, daily iodine supplements, oral or intravenous oil) vs lower iodine (placebo, non-iodised salt, no intervention) O: Prenatal/postnatal growth outcomes, birth outcomes, maternal pregnancy outcomes	18 studies (N=5,729 participants)	D1: LOW D2: LOW D3: LOW D4: LOW OVERALL: LOW
			TS: Randomized controlled trials, non-randomized trials, controlled before-and-after studies, and interrupted time series, including those with repeated measures.		

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Greenwood	To quantify the	10 October	P: Pregnant women and their babies.	24 studies	D1: HIGH
et al 2023	association between iodine status and birth outcomes, including potential threshold	2022	I/E/C: Varying levels of urinary iodine concentration (UIC), urinary iodine excretion or iodine to creatinine ratio (I:Cr), and iodide intake.	(N=42,503 participants)	D2: LOW D3: LOW D4: LOW
potential threshold effects using nonlinear dose-response curves.		O: Birth weight, birth weight centile, small for gestational age (SGA), preterm delivery, and other birth outcomes. Low birth weight and macrosomia: defined as birth weight <2.5 kg and >4 kg, respectively. Small for gestational age (SGA): defined as birth weight <10th centile and large for gestational age (LGA) >90th centile. Spontaneous abortion: defined as fetal loss ≤24 weeks gestation and stillbirth as fetal loss >24 weeks gestation. Preterm delivery: spontaneous preterm birth <37 weeks, or any preterm delivery <37 weeks if this information was not available.		OVERALL: HIGH	
			TS: Cohorts, case-control studies nested within cohorts, and case cohort studies.		
Harding et a 2017	To determine the benefits and harms of	November 2016	P: Women who become pregnant, or pregnant or postpartum women of any chronological age and parity (number of births).	14 studies (N=3,154	D1: LOW D2: LOW
	supplementation with iodine, alone or in combination with other vitamins and		I/E: Any supplement containing iodine, any oral iodine supplement, oral iodine-only supplement, oral iodine supplement with other vitamins and/or minerals, any injected	participants)	D3: LOW D4: LOW
mineral the pr pre postpal the	minerals, for women in the preconception,		iodine supplement, injected iodine-only supplement, injected iodine supplement with other vitamins and/or minerals.		OVERALL:
	pregnancy or postpartum period on their and their		C: Same supplement without iodine or no intervention/placebo, only other vitamins and/or minerals (exact same formulation of other vitamins/minerals, but no iodine).		LOW
	children's outcomes.		O: Maternal thyroid function, thyroid volume, birth outcomes, child mental or motor development.		
			TS: Randomised and quasi-randomised controlled trials (including cross-over trials).		

Page 90 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Katagiri et al	To investigate the	3 June 2016	P: Free-living adults including apparently healthy elderly in	50 studies	D1: LOW
2017	association between iodine excess and		nursing homes, adolescents, children, and infants. Newborns were excluded.	(No. participants unclear)	D2: HIGH D3: HIGH
	thyroid hormone levels or thyroid diseases in free-living		I/E/C: Varying iodine intake/status including at least one arm with excess intake/status measured using urinary iodine or Cre values.	anelea.)	D4: LOW
	роринацопз.		O: Thyroid diseases (hyperthyroidism, hypothyroidism, goitre, and nodule); Thyroid volume; Thyroid hormones (TSH, T3, T4, and Tg) Excluded: Anti-thyroid antibody and autoimmune thyroiditis		OVERALL: HIGH
			TS: Intervention trials (randomized and non-randomized); Cohort studies; Case-control studies; Cross-sectional studies		
Lee et al 2017	To assess the relationship between iodine exposure and papillary thyroid carcinoma (PTC) prevalence	nship between 2015	P: Patients with PTC and controls without PTC.	16 studies	D1: HIGH
			I/E/C: Varying level of iodine exposure determined by one of the following: (1) concentration of urinary iodine (2) reported average urinary iodine level of the population based on geographic location (3) the implementation of salt iodization (4) results of dietary questionnaire	(N>100,000	D2: HIGH
				participants)	D3: UNCLEAR D4: LOW
			O: Papillary thyroid carcinoma (PTC) prevalence.		OVERALL:
			TS: Case-control studies		HIGH
Li et al 2022	To assess the effect of		P: Participants aged 7 and 14 years	17 studies	D1: LOW
	iodine excess on children's intellectual	2020	I/E/C: Areas with high iodine in drinking water and endemic	(N=14,794)	D2: HIGH
	development in areas with high iodine levels in their drinking water.		high iodine goiter areas, with high iodine content in drinking water defined as >150 μg/L and/or median urinary iodine of children >400μg/L.		D3: HIGH D4: LOW
	in their diffiking water.		O: Child neurocognitive development (intelligence)		OVERALL:
			TS: Cross-sectional or controlled studies.		HIGH

Page 91 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Liu et al 2022	To investigate if breast milk iodine concentration (BMIC) can be used as a biomarker for iodine status in lactating women and children <2 years of age.	2021	P: Healthy lactating women and their children <2 years of age (including neonates, infants, and toddlers). I/E/C: Varying levels of breastmilk iodine concentration (BMIC) O: lodine status in lactating women and children <2 years of age measured by urinary iodine concentration (UIC) or and/or I/Cr ratio. TS: Not Specified	51 studies (N=10,388 participants)	D1: HIGH D2: HIGH D3: HIGH D4: HIGH OVERALL: HIGH
al 2021	To assess the effect of iodine supplementation during gestation on the neurocognitive development of children in areas where iodine deficiency is common.	April 2020	P: Pregnant women. I/E/C: Supplementation with iodine vs no supplementation O: Neurocognitive development outcomes TS: Randomized or non-randomized controlled trials or cohorts.	8 studies (No. participants unclear)	D1: HIGH D2: HIGH D3: LOW D4: HIGH OVERALL: HIGH
Monaghan et al 2021	To investigate the associations between iodine intakes and neurodevelopmental outcomes in the offspring of pregnant women.	March 2021	P: Pregnant women and their children. I/E/C: Varying iodine status during pregnancy measured by both maternal urinary iodine assessment (UIC and/or iodine creatine ratio (ICr)) and dietary iodine intakes. Included: natural dietary sources and "accidental" supplementation e.g., women taking supplement prior to/not as part of the study Excluded: intentional dietary supplementation of iodine O: Neurocognitive development in child offspring TS: All study types e.g., prospective cohort, observational studies, and cross-sectional studies.	12 studies (N=124,000 participants)	D1: HIGH D2: HIGH D3: UNCLEAR D4: UNCLEAR OVERALL: HIGH

Page 92 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Nazarpour et al 2020	To investigate the association between gestational urinary iodine status and adverse pregnancy outcomes in euthyroid pregnant women.	October 2019	P: Pregnant women without thyroid dysfunction who had not received iodine supplementation during pregnancy. I/E/C: Varying iodine status (via measurement of urinary iodine concentration (UIC) in the first half of pregnancy). O: At least one pregnancy outcome, including pregnancy loss (abortion or stillbirth), gestational hypertension or preeclampsia, gestational diabetes, antenatal or postpartum hemorrhage, placenta abruption, placenta previa, preterm birth, premature rupture of membranes (PROM), intrauterine growth restriction (IUGR), low birth weight (LBW), small for gestational age (SGA), fetal or neonatal distress, low Apgar score, neonatal death, malformation, and neonatal or NICU admission.	6 studies (N=7,698 participants)	D1: HIGH D2: HIGH D3: LOW D4: LOW OVERALL: HIGH
			TS: Randomized controlled trials (RCTs), non-randomized studies (NRS), prospective or retrospective cohort studies, and case-control studies.		
Nazeri et al 2016	To explore the association of neonatal thyrotropin concentrations and iodine status of mothers during pregnancy and early postpartum periods.	March 2015	P: Healthy pregnant women, postpartum mothers (in the first few weeks after delivery), and their healthy full-term neonates. I/E/C: Varying levels of maternal urinary iodine concentrations (UICs). Studies with environmental or medical exposures were excluded. O: Correlation between maternal urinary iodine concentrations (UICs) and neonatal thyrotropin concentrations. TS: Not specified, observational studies.	29 studies (N>500,000 participants)	D1: HIGH D2: HIGH D3: LOW D4: HIGH OVERALL: HIGH

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Nazeri et al 2020a	To assess the association between maternal urinary iodine concentration (UIC) and thyroglobulin (Tg) levels during pregnancy, and to determine whether Tg concentration accurately reflects iodine status among populations of pregnant women, using the median UIC as an index of iodine status.		8P: Healthy pregnant women and their infants. I/E/C: Varying maternal iodine status during pregnancy O: Thyroglobulin concentration TS: Not specified	25 studies (N=18,965 participants)	D1: HIGH D2: HIGH D3: HIGH D4: LOW OVERALL: HIGH
Nazeri et al 2020b	To investigate whether growth parameters at birth are associated with maternal urinary iodine concentration (UIC) or normal ranges of thyroid hormones during pregnancy.	November 2018	P: Healthy pregnant women (thyroid hormones within the normal range during pregnancy) and their healthy full-term neonates. Excluded: studies in which pregnant women had been exposed to environmental factors (ie, tobacco use, iodine supplements, and iodine overload,eg, iodine-containing contrast media, radioactive iodine, and povidone-iodine for disinfection), pregnant women with thyroid disorders and/or in preterm, LBW, or unhealthy newborns. I/E/C: Varying level of maternal iodine status O: Neonatal anthropometric measures at birth. Birth weight, length, and head, chest, and abdominal circumference, subscapular and triceps skinfolds, and small-for-gestational age (SGA) status. TS: Longitudinal observational studies.	19 studies (N=11,000 participants)	D1: LOW D2: HIGH D3: HIGH D4: LOW OVERALL: HIGH

Page 94 OFFICIAL

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Nazeri et al 2021			9P: Healthy pregnant women and their infants I/E/C: iodine supplementation, lower doses of iodine, a placebo or no supplementation O: lodine status, different thyroid parameters, growth status,	14 studies (N=3432 participants)	D1: HIGH D2: HIGH D3: UNCLEAR D4: HIGH
potential benefits on infant growth parameters and neurocognitive development.		neurocognitive development, pregnancy or neonatal complications. TS: Randomized or quasi-randomized controlled trials.		OVERALL: HIGH	
Nazeri et al 2024	To assess whether postpartum maternal iodine status or supplementation is associated with thyroid function after delivery.		1P: Healthy postpartum women with or without breastfeeding. I/E/C: Maternal iodine status during postpartum (sufficiency vs deficiency) O: Thyroid function parameters (TSH, FT4, T4) TS: Observational and intervention studies.	18 studies (N=5,197)	D1: LOW D2: UNCLEAR D3: UNCLEAR D4: LOW OVERALL: UNCLEAR
Wassie et al 2022	To investigate the associations between newborn thyroidstimulating-hormone concentration (TSH) and childhood neurodevelopment and growth.		P: Children up to 18 years of age. Children with congenital hypothyroidism (CH) were excluded. I/E/C: Varying newborn TSH level O: Neurodevelopmental outcomes: cognitive, language, motor, and behavioural outcomes. Growth outcomes: weight, length, head circumference, waist circumference, skinfolds. TS: Observational studies, intervention studies.	17 studies (N=4,147 participants in cohorts; 503,706 ir record-linkage)	D1: LOW D2: HIGH D3: HIGH D4: LOW OVERALL: HIGH

Reference	Review objectives	Search date	Populations (P), Interventions/Exposures (I/E), Comparators (C), Outcomes (O) and Types of Studies (TS)	Included studies, participants	Risk of Bias
Weng et al	To assess the	January 2016	P: Participants from a random community-based sample in mainland China.	43 studies	D1: LOW
prevalence of thyroid disease with different urinary iodine concentrations (UICs) in the general population of			(N=178,995	D2: UNCLEAR	
		I/E/C: Median UIC of region (3 subgroups: low-iodine group	participants)	D3: HIGH	
		median UIC <100 μg/L; medium-iodine group median UIC 100 to 299 μg/L; high iodine group with median UIC >300 μg/L).		D4: HIGH	
	ulation of	O: Thyroid disease (hyperthyroidism, hypothyroidism, thyroid		OVERALL:	
	mainland China.		cancer, thyroid nodules)		HIGH
Zhang et al	To investigate the	September	P: Papillary thyroid cancer (PTC) and non-PTC patients	10 studies	D1: HIGH
2022	relationship between	2022	(including those with benign thyroid nodules, nodular goiter, and thyroid adenomas), PTC patients with or without lymph node metastases (LNM), PTC patients with or without the BRAF	(N=6,544	D2: UNCLEAR
	•	oncentration (UIC)		participants)	D3: LOW
	and papillary thyroid		mutation.		D4: LOW
	cancer (PTC).		I/E/C: Differing urinary iodine levels		01/55444
			O: Papillary thyroid cancer (PTC).		OVERALL: HIGH
			TS: Case-control studies		

Page 96 OFFICIAL

Risk of bias of systematic reviews

Table 21. Summary of risk of bias assessments conducted by KSR Evidence and additional NHMRC commentary about the implications of risk of bias for NRV development

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment
Aarsland et al 2025	HIGH Excluded Non-English language studies	UNCLEAR Methods additional to database searching not specified	LOW No concerns	No concerns	HIGH	Appears to be a reasonable quality SR. Concerns about RoB relate to exclusion of non-English studies and lack of information about how additional methods to database searches have been employed. These limitations are consistent with limitations of an NHMRC-commissioned review.
Beckford et al 2020	HIGH Excluded conference proceedings and other grey literature	HIGH The search strategy did not appear adequate and limited to English language studies only.	UNCLEAR The number of reviewers involved in the data extraction process and risk of bias assessment was not reported.	HIGH The method of analysis was explained and appeared appropriate and methods used to pool data were appropriate. However, appropriate attempts to explore the observed heterogeneity were not made. Robustness of the findings was not demonstrated.	HIGH	Concerns raised should be considered when using interpreting and applying findings. The review has several significant methodological limitations. However, the high risk of bias should not preclude the review findings from informing considerations about the typical urinary volume excreted by children of different ages.

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment	
Bolfi et al	LOW	UNCLEAR	LOW	LOW		Robust review, noting that the only	
2024	No concerns	Methods additional to database searching not specified	No concerns	No concerns	LOW	limitation is that methods addition to database searching were not specified.	
Businge et al	LOW	UNCLEAR	UNCLEAR	HIGH		Concerns raised should be	
2021	No concerns	Embase not mentioned. Methods additional to database searching were not mentioned.	Data extraction by a single reviewer and checked by another. Some (but not all) study characteristics extracted and presented.	Heterogeneity was not addressed in the analyses. Subgroup or sensitivity analyses were not mentioned.	нідн	considered when interpreting and applying findings. Given concerns about unaddresse heterogeneity, meta-analyses should be interpreted with caution	
Candido et al	HIGH	UNCLEAR	UNCLEAR	HIGH		Substantial concerns raised about	
2023	Excluded Non-English language studies	No search strategies were provided.	The number of reviewers involved in data extraction was not reported.	Heterogeneity was high and was not addressed in the analyses. Subgroup or sensitivity analyses were not mentioned.	HIGH	risk of bias. These should be considered when interpreting and applying findings, particularly concerns about the completeness of the body of evidence (missing search strategies) and robustness of data extraction and synthesis methods.	
Cao et al 2017	HIGH	HIGH	HIGH	LOW		Findings to be interpreted with	
	No specific inclusion criteria for participants were mentioned.	Search strategies not provided, number of reviewers involved in screening and screening procedures not described	Characteristics extracted were insufficient for interpretation of results	No concerns	HIGH	caution given uncertainties/ limitations raised.	

Reference		Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment
Dineva et al 2020	HIGH - Studies written in languages other than English, unpublished articles, or non-peer- reviewed articles (e.g., meeting abstracts or letters) were also exclude	LOW No concerns	UNCLEAR - The number of reviewers involved in the risk of bias assessment was not reported.	LOW No concerns	HIGH	Concerns raised should be considered when using interpreting and applying findings, however fundamental methodology appears sound and most limitations are similar to those of NHMRC commissioned reviews (eg. exclusion of non-english studies and certain grey literature).
Dineva et al 2023	HIGH Studies in languages other than English and unpublished or non-peer reviewed articles (e.g. meeting abstracts, letters) were excluded.	No concerns	No concerns	No concerns	HIGH	Despite being assessed as being at HIGH risk of bias, NHMRC considers this review to be well conducted. Concerns about RoB relate to exclusion of non-English studies and unpublished articles and abstracts - these limitations are consistent with the limitations of any NHMRC-commissioned review.
Dror et al 2018	No concerns	HIGH - The search terms were provided but full details of the search strategy were not reported.	No. reviewers involved in data extraction not reported. Formal methodological quality assessment of included studies was not performed.	HIGH - Only narrative synthesis. Heterogeneity, publication bias and risk of bias not taken into consideration	HIGH	Concerns raised should be considered when interpreting and applying findings. The lack of assessment of methodological quality of included studies - and consideration of risk of bias during synthesis - is of particular concern.

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment
Farebrother et al 2018	LOW No concerns	LOW No concerns	LOW No concerns	LOW No concerns	LOW	Good quality SR, although consideration should be given to the currency of the review (Feb 2017 searches) when interpreting and applying findings
Greenwood et al 2023	HIGH Non-English language studies and unpublished articles and abstracts excluded	LOW No concerns	LOW No concerns	LOW No concerns	HIGH	Despite being assessed as being at HIGH risk of bias, NHMRC considers this review to be well conducted. Concerns about RoB relate to exclusion of non-English studies and unpublished articles and abstracts - these limitations are consistent with limitations of an NHMRC-commissioned review.
Harding et al 2017	LOW No concerns	LOW No concerns	LOW No concerns	LOW No concerns	LOW	Good quality SR, although consideration should be given to the currency of the review (2017) when interpreting and applying findings
Katagiri et al 2017	No concerns	HIGH Language restrictions were applied, limiting the search to articles in English or Japanese.	HIGH Data extraction and quality assessment of selected papers were conducted by one author.	LOW No concerns	HIGH	Concerns raised should be considered when interpreting and applying findings. The fundamental methodology appears sound, although some concerns that data extraction and quality appraisal have not been performed in duplicate. Concerns about review currency should also be considered.

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment	
Lee et al 2017	HIGH	HIGH	UNCLEAR	LOW		Concerns raised should be	
	Only case-control studies published in English were included.	•	The number of reviewers involved in the methodological quality assessment were not reported.	No concerns	HIGH	considered when interpreting and applying findings, in particular noting concerns about the comprehensiveness of search strategy. Review currency is also a	
		The search terms were provided but full details of the search strategy were not reported.				relevant consideration.	
Li et al 2022	LOW HIGH		HIGH	LOW	_	Findings to be interpreted with	
	No concerns	selection was by two independent reviewers. Methods additional to	The number of reviewers involved in data-extraction and risk of bias assessment was not mentioned. Some study characteristics were reported, but insufficient information about	No concerns	нідн	caution given uncertainties/ limitations raised.	
Liu et al 2022	HIGH	HIGH	possible confounders. HIGH	HIGH		Concerns raised should be	
	Non-English language studies were excluded.	The search terms were provided but full details of the search strategy were not reported. The number of reviewers involved in the study selection was not reported.	Inappropriate/ outdated tool used for appraisal (Jadad) and the number of reviewers involved in RoB assessment was not reported	Only narrative synthesis. Heterogeneity, publication bias and risk of bias assessment not taken into consideration.	HIGH	considered when interpreting and applying findings.	considered when interpreting and

Page 101 OFFICIAL

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment
Machamba et	HIGH	HIGH	LOW	HIGH		Concerns raised should be
al 2021	Inclusion was limited to studies published in Portuguese, English and Spanish.	Embase was not mentioned. Searched strategies were presented and appeared suboptimal. The number of reviewers involved in inclusion screening was not mentioned. Methods additional to database searching were not mentioned.	No concerns	The paper did not mention any (quantitative) analysis methods. Narrative synthesis described, but no pre-defined analyses reported.	HIGH	considered when interpreting and applying findings.
Monaghan et	HIGH	HIGH	UNCLEAR	UNCLEAR		Concerns raised should be
al 2021	Restricted to English- language publications only.	Although no restrictions on publication form, language or date, the search strategy was not adequate. Three authors were involved in the full text screening, although initial screening was conducted by single reviewer.	The number of reviewers involved in the data extraction process and risk of bias assessment was not reported.	Only narrative synthesis was performed. Heterogeneity assessment and publication bias assessment were not taken into consideration. Biases in primary studies were taken into consideration.	HIGH	considered when interpreting and applying findings, in particular noting concerns about the comprehensiveness of search methods and lack of clarity around other methods.

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment
Nazarpour et	HIGH	HIGH	LOW	LOW	-	Concerns raised should be
al 2020	Restricted to English- language publications only. Studies were excluded if they were non-original (e.g., reviews, commentaries, case reports), lacked clear UIC classification, or had unclear or inaccurate data.	The search strategy did not appear to have used controlled terms such as MeSH.	No concerns	No concerns	HIGH	considered when interpreting and applying findings. Although the fundamental methodology appears sound, concerns remain regarding the comprehensiveness of searches and criteria for classifying exposure. Review currency may also be a relevant consideration.
Nazeri et al	HIGH	HIGH -	LOW	HIGH -	_	Concerns raised should be
2016	Non-English studies were excluded.	The search terms were provided but full details of the search strategy were not reported.	No concerns	Heterogeneity was found to be high for all outcomes analysed and was not explored in detail.	HIGH	considered when interpreting and applying findings. Although the fundamental methodology appears sound, concerns about comprehensiveness of search strategy and unexplained/ unexplored heterogeneity remain. Review currency is also a relevant consideration.
Nazeri et al	HIGH	HIGH	HIGH	LOW		Concerns raised should be
2020a	Non-English studies were excluded. Inclusion criteria may not appropriately control for confounders (eg. included women exposed to environmental factors that influence thyroid function, thyroid disease)	Embase was not mentioned. Some keywords were mentioned but no full search strategy was presented	The number of reviewers involved in risk of bias assessment was not mentioned. Unsuitable risk of bias assessment tool used.	No concerns	HIGH	considered when interpreting and applying findings, particularly potential for confounding.

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment	
Nazeri et al	HIGH -	HIGH -	UNCLEAR -	LOW		Concerns raised should be	
2020b	Non-English studies were excluded.		The number of reviewers in risk of bias assessment was not reported.	No concerns	HIGH	considered when interpreting and applying findings, in particular about the comprehensiveness of search methods and lack of clarity around other methods. Review currency should also be examined.	
Nazeri et al	HIGH	HIGH	UNCLEAR	HIGH		Concerns raised should be	
2021	English language only	Scholar. Embase was not	Two investigators extracted the trial data. Any disagreements were resolved through discussion or consultation with a third investigator. The number of reviewers involved in risk of bias assessment was not mentioned.	further due to low	HIGH	considered when interpreting and applying findings, in particular methodological concerns as detail of the search strategy is unavailable and there is lack of clarity around risk of bias assessment and high heterogeneity.	
Nazeri et al	LOW	UNCLEAR	UNCLEAR	LOW		Review appears fairly	
2024	No concerns	Full search strategies not provided	The number of reviewers involved in risk of bias assessment was not mentioned.	No concerns	UNCLEAR	comprehensive, although consideration should be given to highlighted limitations when interpreting and applying findings.	

Page 104 OFFICIAL

Reference	Domain 1 - Study Eligibility Criteria	Domain 2 - Identification and Selection of Studies	Domain 3 - Data Collection and Study Appraisal	Domain 4 - Synthesis and Findings	Overall Risk of Bias	NHMRC Comment	
Wassie et al	LOW	HIGH	HIGH	LOW		Concerns raised should be	
2022	No concerns	The search strategy was adequate. However, it was limited to English language articles. Only one author was involved in screening the titles and abstracts.	One reviewer was involved in the data extraction process. The number of reviewers involved in risk of bias assessment was not reported.	No concerns	HIGH	considered when interpreting and applying findings. Although the fundamental methodology appears sound, accurate study selection and data extraction cannot be assured as duplicate screening and data extraction have not been performed.	
Weng et al	LOW	UNCLEAR	ĤIGH	HIGH		Concerns raised should be	
2017	No concerns	Some keywords were mentioned, but no full search strategies were presented. Methods additional to database searching were not mentioned.	Inappropriate risk of bias tool applied (QUADAS checklist, for diagnostic accuracy studies)	No analyses investigating heterogeneity were reported.	HIGH	considered when interpreting and applying findings. In particular, risk of bias assessments and determinations about bias in the evidence base should not be relied upon given use of an inappropriate tool. Currency of findings (searches 2016) should also be considered.	
Zhang et al	HIGH	UNCLEAR	LOW	LOW		Concerns raised should be	
2022	English language only	The search terms were provided but full details of the search strategy were not reported.	No concerns	No concerns	HIGH	considered when interpreting and applying findings. The fundamental methodology appears sound, although there is a lack of clarity regarding the comprehensiveness of the search strategy.	

Appendix D - Outcomes from review of primary studies

Identified studies

Outcomes reported by studies are marked by an 'x' in the following tables.

Balance studies

Study design	Study ID	Overall risk of bias	Outcomes reported			
Balance	Tan (2019)	Serious	lodine intake, excretion via 4 routes			

Adults

Study characteristics				Outcomes reported								
Study design	Study ID	Overall risk of bias	5	TSH	FT4	Tg	Thyroid volume	Total goitre rate	_	Thyroid autoimmunity		
Randomised	Clark 2003	High	X	X	X							
controlled trials (RCTs)	Gardner 1988	Some concerns (<u>-</u>	Х	X							
	Sang 2012	Low ⁶	+	x	Х		x					
	Soriguer 2011	High	X	x	×	Х	×					
Non-randomised studies of interventions (NRSIs)	Paul 1988	Serious	X	х	х							
Observational studies	Andersen 2001	Serious	X	x	×							
	Gutierrez-Repiso 2015	Serious	X	х	х							
	Teng 2006	Serious	X	х	Х	Х		х	×	×		

⁶ The evidence scoping contractor assessed Sang (2012) as being at low risk of bias. However, NHMRC suggests that there may be some concerns about risk of bias due to outcome measurement, owing to the 4 year time gap between the two study phases, which may have contributed to the observed differences between groups.

Pregnancy (published since 2016)

Maternal outcomes

Study characteristics				Outcomes reported								
Study type	Study ID	Overall risk of bias	TSH	FT4	Tg	Thyroid volume	Total goitre rate	Thyroid cancer	Thyroid autoimmunity			
Randomised controlled trials (RCTs)	Censi 2019	Low +	x	x	x	x						
	Eriksen 2020	Low	x		x				х			
	Gowachirapant 2017	Some concerns	x	x	×	×			х			
	Manousou 2021	Low	x	×	×				х			
Observational studies	Corcino 2019/Silva De Morais 2020	Serious	x	x	×				×			
	Naess 2021	Some concerns -	x	×								
	Olesea 2020	Serious					×					
	Ollero 2019	Serious	x	×					х			
	Threapleton 2021	Serious	Х	×	×		×					

Birth and child outcomes

Study characteristics			Outcomes reported								
Study type	Study ID	Overall risk of bias	Pregnancy ar	nd obstet	Child development						
			Miscarriage	Still-	Pre-term	Neonatal	Neurocognitive				
				birth	birth	тѕн	development (various				
							measures)				
Randomised controlled trials (RCTs)	Censi 2019	Low				X					
	Eriksen 2020	Low				x					
	Gowachirapant 2017	Some concerns -				×	x				
	Mohammed 2020	High					х				
	Manousou 2021	Low +				x					
Observational	Abel 2019/Abel 2020	Moderate -		х	×		Х				
studies	Corcino 2019/Silva De Morais 2020	Serious	x	x	x						
	Markhus 2018	Serious					х				
	Murcia 2017	Serious					х				
	Olesea 2020	Serious				x					
	Snart 2020/ Threapleton 2020	Serious	•	X	X		x				
	Torlinska 2018	Serious		х	×						
	Zhou 2019	Serious					х				

Children and adolescents

Study type	Study ID	Overall risk of bias		Thyr	oid fun	ction	Thyroid	Total	Thyroid	Thyroid	Neurocognitive
				TSH	FT4	Tg	volume	goitre rate	cancer	auto- immunity	development
Randomised controlled trials	Eltom 1985	High	X	Х				Х			
(RCTs)	Gordon 2009	Some concerns	-			Х					Х
	van den Briel 2001	High	X	Х	X	Х					
	Zimmermann 2006	Some concerns	-	Х		Х					Х
	van Stuijvenberg 1999	High	X					Х			X
	Zahrou 2016	High	X								
Non-randomised studies of interventions (NRSIs)	Tajtáková 1998	Serious	X	X	Х	X	X			Х	
Observational studies					Nili	identifie	ed				

Page 109 OFFICIAL

Appendix E - Evidence-to-Decision Framework

lodine - Requirements for avoiding deficiency

Background

Iodine - function and dietary sources

lodine is a mineral that is found in soil and ocean waters and is an essential nutrient required for synthesis of thyroid hormones such as thyroxine (T4) and triiodothyronine (T3). Iodine deficiency is associated with thyroid dysfunction, thyroid disease, and adverse child neurocognitive development.

lodine-rich foods include seafoods such as fish, shellfish, or seaweed, eggs, milk, and iodised salt. The level of iodine in cereal and grain foods varies depending on the iodine content of soil in which the food is grown. Low soil iodine levels are typical for New Zealand and in some parts of Australia such as Tasmania (AIHW, 2016). In 2009 Australia and New Zealand introduced mandatory fortification requirements for the addition of iodine (via iodised salt) to commercial bread, to address iodine deficiency in the population.

Absorption of iodine from food is estimated at 90 - 92% under normal conditions (Thomson et al 1996, Jahreis et al 2001, Aquaron et al 2002). Some compounds - known as goitrogens - impair iodine uptake and increase an individual's risk of deficiency. Identified goitrogens include tobacco and electronic cigarettes (Colzani et al 1998, Knudsen et al 2002, Shields et al 2008, Flieger et al. 2019), along with foods such as cassava, millet, maize and cruciferous vegetables (Gibson, 1991). However, the risk of deficiency from consumption of these foods may be negligible where iodine intake is adequate and a varied diet is consumed (Zimmermann et al. 2008). Absorption can also be affected by deficiencies in other micronutrients including selenium and iron (Yang et al 1997, Kohrle 1999, Thomson 2004, Zimmermann et al 2000).

The developing infant and neonates are particularly sensitive to the effects of maternal iodine deficiency during pregnancy or lactation, due to the critical role of iodine in early neurocognitive development. Individuals with low intake of iodine-containing foods - including vegans, vegetarians, and individuals with low dairy or commercial bread consumption - may be at greater risk of deficiency.

Criteria for measuring iodine intake and status

There are limitations in the accuracy of dietary iodine intake assessment methods, including concerns about reporting bias (including recall and social desirability bias), variability of iodine content in foods, difficulty in measuring contribution of iodine from use of iodised salt at the table and in cooking, and the inaccuracy of food composition data. It is also difficult to ascertain individual status based on dietary intakes which reflect intakes at a specific point in time. In people with iodine replete diets, iodine is incorporated into

thyroglobulin and this can provide up to 3 months of thyroid hormone, ensuring that thyroid function is maintained during periods of low iodine intake (e.g. due to seasonal variation in iodine content of food).

Measures of urinary iodine concentration (UIC) are used as established biomarkers for intake and status, although these measures also have limitations. As more than 90% of dietary iodine is excreted in the urine, urinary iodine is used as an indicator of recent iodine intake. Urinary iodine can be measured over 24-hours or in a spot urine sample. Collection of 24-hour urine (known as urinary iodine excretion or UIE) is preferable to spot-sampling (UIC) due to diurnal variation in excretion of iodine in urine. However, this measure has a high respondent burden, and there is no internationally accepted method to determine if all urine voided during the 24-hours was collected (i.e. completeness).

The use of spot urine samples is simpler and consequently, more frequently used and reported in the literature. Furthermore, the epidemiologic criteria described below are based on median UIC (μ g/L). In addition to the diurnal variation mentioned, variation in urinary volume is another concern with spot urine samples. High water intake and thus high urine volumes will result in lower UIC values which could be misinterpreted as poor iodine status whereas low urine volumes will result in higher UIC values, suggesting adequate iodine status where this may not be the case. To address this problem, corrected measures of UIC are often reported, for example, correcting for urinary creatinine level.

Both 24-hour UIE and UIC are associated with inter- and intra-individual variation, thus neither measure should be used to assess iodine status of an individual, but rather to assess the iodine status of a group or population (where sample sizes are sufficiently large). The World Health Organization (WHO) have developed epidemiologic criteria for assessing population iodine status in school-age children using median UIC, shown in Table 1. It also recommends that the proportion of the population with median UIC below 50 μ g/L should not exceed 20% (WHO, 2007). The criteria for children were subsequently extended to adults (except during pregnancy).

Page 111 OFFICIAL

Table 1. WHO epidemiologic criteria for assessing iodine nutrition using median UIC (Source: WHO 2013)

Population	Median UIC (μg/L)	lodine intake/status	lodine status		
School-aged	<20	Insufficient	Severe iodine deficiency		
children (6 years and up)	20 - 49	Insufficient	Moderate iodine deficiency		
and non- pregnant	50 - 99	Insufficient	Mild iodine deficiency		
adults	100 - 199	Adequate	Adequate iodine nutrition		
	200 - 299	Above requirements	Slight risk of more than adequate iodine intake		
	≥300	Excessive [^]	Risk of adverse health consequences		
During	<150	Insufficient			
pregnancy	150 - 249	Adequate			
	250 - 499	Above requirements			
	≥500	Excessive [^]			
During	<100	Insufficient			
lactation	≥100	Adequate			

[^] In this context, the term 'excessive' denotes an intake in excess of that required for prevention and control of iodine deficiency. It is not synonymous with an 'Upper Level' at which there is an elevated risk of toxicological effects.

Page 112 OFFICIAL

Evidence to decision tables

Adults

Criterion	OPTION 1: Maintain current recomme Adapt current NRVs to ne			OPTION 2: Revise recommendations to Als to reflect uncertainty in evidence base		
Example		EAR RDI		Al		
recommendation		(µg/day)	(µg/day)	(µg/day)		
	Males			Males		
	18 to under 30 years	100	150	18 to under 30 years 150		
	30 to under 50 years	100	150	30 to under 50 years 150		
	50 to under 65 years	100	150	50 to under 65 years 150		
	65 to under 75 years	100	150	65 to under 75 years 150		
	75 years and older	100	150	75 years and older 150		
	Females			Females		
	18 to under 30 years	100	150	18 to under 30 years 150		
	30 to under 50 years	100	150	30 to under 50 years 150		
	50 to under 65 years	100	150	50 to under 65 years 150		
	65 to under 75 years	100	150	65 to under 75 years 150		
	75 years and older	100	150	75 years and older 150		

Health evidence profile and supporting information

studies reporting average thyroid iodine accumulation and turnover between 91.2 and 96.5 µg/day in euthyroid adults (Fisher and Oddie, 1969a, Fisher and Oddie, 1969b). Values were rounded to 100 μg/day to reflect New Zealand data on urinary iodide to thyroid volume (Thomson et. al. 2001).

The RDI was established by applying a 20% co-efficient of variation (CV), being half of the 40% CV reported by Fisher and Oddie (1969a). This adjustment was made on the basis that half of the observed variation was considered to be due to the complexity of the experimental design and calculations wide variation in the iodine intakes associated with 'null' used to estimate turnover (US IOM, 2001).

More recently, concerns have been raised about the accuracy of thyroid accumulation studies for determining iodine requirements. EFSA (2014) noted that thyroidal iodine capture is downregulated with increasing iodine intake. Fisher (Fisher and Oddie, 1969a, Fisher and Oddie, 1969b) measured and Oddie's thyroid accumulation studies (Fisher and Oddie 1969a, 1969b) measured UIE at 410µg/day and 280 µg/day respectively, suggestive of higher habitual iodine intakes that may not reflect the Australian and New Zealand context.

A 2014 balance study (Tan, 2019) found that neutral balance was achieved with an iodine intake of 111 µg/day, which equates to an RDI of 155 μ g/day when a 20% CV is applied. The balance study had several limitations, including no run-in period, and it was conducted in a small sample (N=25) of iodine replete, euthyroid female students. Consequently, findings may not be broadly generalisable to the Australian and New Zealand context.

studies and recent balance studies collectively estimate requirements between 90 and 110 µg/day. The available

The current (2006) recommendations for adults are based on When developing NRV recommendations for nutritional adequacy, other international bodies (EFSA, 2014; Blomhoff et al. 2023) concluded that the available evidence is insufficient to support derivation of an EAR and RDI. This reflects concerns about the reliability of balance and thyroid accumulation studies for estimating requirements, including:

> methodological limitations of balance studies (eg. inadequate run-in periods, accuracy of methods for measuring intake and losses)

that observed 'balance' may reflect requirements that only apply in a narrow range of contexts, or reflect transient adaptive changes rather than steady state requirements balance reported across studies

poor generalisability of estimates based on thyroid accumulation studies, noting that thyroidal iodine capture is downregulated with increasing iodine intake. Thyroid accumulation studies upon which current NRVs are based UIE at 410 μg/day and 280 μg/day respectively, suggestive of higher habitual iodine intakes that may not reflect the Australian and New Zealand context.

A 2014 balance study (Tan, 2019) found that neutral balance was achieved with an iodine intake of 111 µg/day, which equates to an RDI of 155 µg/day when a 20% CV is applied. However, the balance study had several limitations including no run-in period, and it was conducted in a small sample (N=25) of iodine replete, euthyroid female students. Consequently, findings may not be broadly generalisable to the Australian and New Zealand context.

For most health outcomes or biomarkers related to deficiency or adequacy, the relationship with iodine intake is either not sufficiently characterised, or is insufficiently Despite uncertainty in the evidence, the thyroid accumulation sensitive or reliable to inform establishment of an NRV.

> Establishing an Adequate Intake (AI) in place of the existing EAR and RDI recommendations reflects uncertainties in the underlying evidence base.

Page 114 OFFICIAL evidence supports maintaining the current EAR of 100 µg/day.

Furthermore, the RDI of 150 μg/day - derived by applying a CV of 20% to the EAR of 100 μg/day - is supported by observational data suggesting that 150 μg/day intake in adults corresponds with a low population prevalence of goitre (EFSA 2014).

Under the NHMRC's methodological framework for NRV development (NHMRC, 2025), an AI can be established based on experimental or observational data.

Australian and New Zealand population data were deemed to be unsuitable for deriving Als because:

there is substantial variation between estimates (both between Australia and New Zealand, and across Australian jurisdictions).

2014/15 data suggest that mild deficiency remains an issue in some New Zealand populations, including females using Australian population data may overestimate requirements, because:

there is no evidence that the general Australian population has any level of deficiency for most age groups (excluding pregnant and lactating populations, and women of child-bearing age)

the CV of intake typically exceeds the CV of requirement due to mandatory fortification, intakes in some populations (e.g. children) are likely to substantially exceed requirements.

The approach taken by EFSA (2014) and NNR (Blomhoff et. al. 2023) suggested an AI of 150 μ g/day can be derived from observational data suggesting that UIC of 100 μ g/day in children is associated with low prevalence of goitre (Delange et al 1997), which corresponds to an estimated 150 μ g/day intake in adults (EFSA 2014).

This value is supported by:

data from thyroid accumulation studies upon which the existing RDI of 150 μg/day is based balance study data suggesting that 155 μg/day is sufficient

to meet the requirements of almost all individuals (Tan 2019).

Page 115 OFFICIAL

lodine exposure in Australia and New Zealand Recent (2022-24) urinary iodine data from Australia suggests that the adult population in Australia is iodine sufficient - based on WHO criteria - with almost all age groups having median UIC >100 µg/L (WHO 2013; ABS 2025a). However, data suggests mild population deficiency in females of reproductive age (aged 25 to 44 years). This raises concerns about iodine intakes and status in this population, given the critical role of iodine in fetal and neonatal development.

National dietary intake data from the 2023 National Nutrition and Physical Activity Survey (NNPAS; ABS 2025c) and 2011-13 Australian Health Survey (AHS; ABS 2015) are presented in Table 2. Intakes in females were lower than those of males across all age groups in both 2011-13 and 2023 surveys. Based 2011-13 data, females were more than 4 times as likely to have inadequate intakes as males with inadequate intake prevalent in 2% of males and 10% of females aged 19 years and over. However, it is unclear whether this data continues to reflect the situation in Australia, with the 2023 NNPAS reporting an increase in iodine intake between 2011 and 2023 (ABS 2025c).

TABLE 2 - AUSTRALIAN NATIONAL DIETARY IODINE INTAKE DATA IN ADULTS, 2023 NNPAS (ABS 2025C) AND 2011-13 AHS (ABS 2015)

		2023 NNPAS (ABS, 2025c)		2011-13 AHS (ABS, 2015)				
	Males	Females	Male	s	Females			
Age groups in years (2023/2011-13)	Mean Mean intake (μg/day)		Mean (95% CI) Intake (μg/day)	% less than EAR	Mean (95% Cl) Intake (μg/day)	% less than EAR		
18 to <30y/19 to <31y	194.2	144.6	202 (120 - 299)	1.5%	146 (86 - 218)	11.7%		
30 to <50y/31 to <51y	197.3	160.0	200 (119 - 297)	1.6%	152 (91 - 226)	9.0%		
50 to <65y/51 to <71y	199.6	158.2	182 (106 - 274)	3.5%	149 (89 - 221)	10.5%		
65 to <75y/71y and over	190.9	167.1	170 (107					
75y and over/71 y and over	193.1	164.6	178 (103 - 270)	4.2%	151 (91 - 224)	9.2%		

In New Zealand, the most recent national data found that median UIC for all adults was 103 μg/L, however one in five (20.3%) of those surveyed had UIC below 50 μg/L - slightly above the WHO threshold for population sufficiency (NZ MoH,

Page 116 OFFICIAL

2020; WHO, 2013). Furthermore, whilst the median UIC for men was >100μg/L across all ages and ethnic groups, the median UIC for women remained below the WHO threshold for sufficiency at 93 μg/L, with only those women aged 15-24 years or of Māori, Pacific and Asian ethnicities reporting concentrations >100 μg/L (NZ MoH 2020)

There are no clear indicators of population-level health effects associated with iodine deficiency in Australia and New Zealand, following the introduction of mandatory fortification in 2009. However, the persistence of mild deficiency in women of reproductive age is of concern and requires careful consideration. Individuals with diets low in iodine-containing foods - such as vegan/vegetarian or dairy-free diets, low commercial bread intake, or low iodised salt intake - may be at increased risk of deficiency. This is a particular consideration with reduced consumption of commercial bread and bread products (ABS 2025b; ABS 2025c) and growing interest in plant-forward diets with lower animal product consumption in Australia and New Zealand (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023).

Benchmarking against comparable international iurisdictions Irrespective of whether an EAR and RDI is retained - or an AI set - the recommended iodine intake for adults aligns with values from comparable international jurisdictions, noting that the type of NRV (EAR & RDI vs AI) varies across jurisdictions. Table 3 shows NRV recommendations for comparable international jurisdictions. Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

TABLE 3 - ADULT NUTRITIONAL ADEQUACY RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

Age (years)	Proposed ANZ Al (µg/day)	Current/ Proposed ANZ RDI (2006) (µg/day)	EFSA AI (2014) (μg/day)	NNR AI (2023) (µg/day)	WHO RDI (2007) (μg/day)	D-A-C-H RDI (2013) (μg/day)
Adults 18 +years:	150	150	150	150	150	200

Balance of effects

The current recommendations are expected to be protective. The proposed AI recommendation will be protective of (benefits and harms) of public health. There is no physiological or epidemiologic evidence of deficiency at intakes aligned with current recommendations.

> Presenting NRV recommendations for iodine as an EAR and RDI may imply a degree of certainty in an NRV for which the underpinning evidence base is more limited. However, the relative consistency between estimates from thyroid accumulation studies, balance studies and observational studies provides some comfort in the robustness of estimates, be presumed in populations with mean intakes around or with several studies suggestive of an EAR in the range of 95 - above the AI, for those with intakes below the AI, adequacy 110 µg/day. There is also no new evidence to suggest that the cannot be determined (US IoM 2000). Consequently, current recommendations are not suitable.

Furthermore, comparison of food system modelling and estimated dietary intakes against the EAR provides a critical measure for monitoring and evaluating public health interventions, such as mandatory fortification. This is an important consideration, given the current iodine fortification Although dietary intake is not a reliable measure of iodine program in Australia and New Zealand.

public health and align with the current recommended RDIs. There is no physiological or epidemiologic evidence of deficiency at intakes aligned with current recommendations.

Revising the recommendations from an EAR and RDI to an Al communicates uncertainties in the evidence base more clearly. However, the AI cannot be used to determine the prevalence of inadequate nutrient intakes within a population. Although a low prevalence of inadequacy may removing the EAR in favour of an AI impedes analysis of population inadequacy for iodine using dietary intake data compared with EAR. This analysis is often performed by researchers and policymakers - including in the Australian Health Survey.

intake in Australia and New Zealand, given wide variability of lodine in the food supply, limitations in food composition data and the need to factor in use of jodised salt at the table and in cooking. In contrast, median UIC is an established biomarker for evaluating population iodine status (WHO 2007) and is routinely measured both in research and in the Australian National Health Measures Survey. The 2008/09 New Zealand National Nutrition Survey measured urinary liodine concentration to assess iodine status over dietary intake data, owing to concerns about the accuracy of food composition data for estimating intake (University of Otago and NZMoH 2011). Consequently, removal of the EAR may not impede population monitoring of iodine status.

Page 118 OFFICIAL

However, comparison of food system modelling and estimated dietary intakes against the EAR provides a critical measure for monitoring and evaluating public health interventions, such as mandatory fortification. This analysis would be precluded, if the EAR were replaced with an AI, for the reasons stated above.

Certainty of the evidence

The evidence for iodine requirements comes from experimental studies such as thyroid accumulation and balance studies, which are imprecise and may not accurately account for iodine requirements. Findings from observational studies on goitre prevalence vary substantially across geographic regions are subject to confounding due to a range of factors including past iodine status.

Overall, the evidence for the intake of iodine required to prevent deficiency is very uncertain. However, the level of consistency across estimates derived using different approaches provides some assurance that the proposed recommendations - whether an EAR and RDI or an AI - will be protective of public health.

Values, preferences and feasibility (consumers, communities)

The current RDI - or proposed AI recommendation - for adults are feasible to achieve, based on estimated iodine intakes across all foundation diets, and for each individual foundation diet (omnivore, rice-based, pasta-based and lacto-ovo-vegetarian). Relevant food modelling data are shown at Table 4.

TABLE 4 - FOOD MODELLING DATA (NHMRC, 2011) IN ADULTS

	Core food F groups^		ion diets - erall	Rice	Rice-based		Pasta-based		ovo-vego
Age group	Intake in persons		Intake in females	Intake in males	Intake in females	Intake in males	Intake in females	Intake in males	Intake in females
(years)	(μg/day	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)
19-30 yr		197	210	213	204	181	187	177	173
31-50 yr	140	210	211	224	210	192	197	190	178
51-70 yr	148	219	275	229	290	198	229	198	233
70+ yr		256	260	275	289	249	223	215	218

Resource impacts

Retaining the current values for adults has no material implications. Although adult age groupings are being adjusted to align with new NRVs age groupings (see Methodological Framework; NHMRC 2025), the adult NRVs are the same for all age groups so there is no material impact of this change. Consequently, this minor change to age groupings should have no implications for regulators, including FSANZ (food and food products) and TGA (supplements).

Replacing the current EAR and RDI with an AI to reflects uncertainty in the evidence base, and adjusts recommendations to align with new age groupings.

While small, these changes may have significant implications for regulators, including FSANZ (food and food products) and the TGA (supplements). In particular, removal of the EAR may preclude analysis comparing dietary intake modelling data against the EAR. Preliminary discussions with FSANZ have indicated that removal of the EAR would be problematic for ongoing monitoring of the mandatory fortification program.

The FSANZ adult regulatory RDI for iodine is 150 ug/day. although this regulatory value only applies in the context of food labelling.

Views will be sought during targeted/stakeholder consultation and considered when developing final NRVs.

equity impacts, sustainability)

Other factors (health Groups at risk of deficiency include vegans, vegetarians, individuals with low consumption of dairy or commercial bread, individuals with low intakes of iodised salt, and smokers of both tobacco and electronic cigarettes. Reduced consumption of commercial bread and bread products in Australia (ABS 2025b) and increasing interest in predominantly plant-based diets (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023) has the potential to reduce population iodine intake and should be closely monitored.

> Data from Australia and New Zealand also suggests that women of reproductive age may be mildly deficient. Sufficient iodine status during pregnancy is required to support child neurocognitive development. It is critical that public health communication addresses the need for iodine supplementation pre-conception and throughout pregnancy and lactation, to provide for optimal fetal development.

With any change to the NRVs care must be taken to avoid suggesting that there is uncertainty about the need for increased iodine during pregnancy, or to undermine messaging about routine iodine supplementation in this cohort.

Page 121 OFFICIAL

Decision

Option 1 (retain existing EAR and RDI, adjusted to with additional age groupings) was selected in view of the potential harms to public health monitoring associated with removal of the EAR - in particular the existing iodine fortification program. Further, although the evidence underpinning the EAR is not robust, several different sources of evidence from thyroid accumulation and balance studies support establishing an EAR in the range of 90 - 110 µg/day. Finally, there is no evidence that the current recommendations are associated with adverse public health outcomes.

During pregnancy

Criterion	OPTION 1: Maintain current recommendations (EAR & RDI) Adapt current NRVs to new age groupings			OPTION 2: Revise recommendations to Als to reflect uncertainty in evidence base		
Example recommendation	Pregnancy	EAR 160 μg/day	RDI 220 μg/day	Pregnancy	ΑΙ 220 μg/day	
Health evidence profile and supporting information	requirements, a during pregnant estimated at 75 in the newborn 50-100 µg in ne Ermans, 1991). A pregnant wome a preliminary Excalculated. This estimate w following supports a balance study pregnant wome (Dworkin et al., studies on the estimate w	djusted to account for account for Daily fetal thyroid pg/day based on 10 thyroid, and an estimate whorns (Delange and Assuming an EAR of an (based on the EAR AR of 170 µg/day during evidence: Which reported neuron with iodine intake 1966); and	for additional requirements of iodine uptake was 200% daily turnover of iodine mated thyroid content of ad Burgi, 1989; Delange and 95 µg/day for non-R identified by the US IOM) aring pregnancy was	with iodine intake of 202 µg Chinese women (Chen et al of 280 µg/day when applyi 160 µg/day reported by Dw noted that estimated iodine habitual intake and also var evidence from balance study requirements during pregnal In recent years there has be examining the relationship I and child neurocognitive debetween severe iodine deficimpairments in child neurocestablished, the evidence for certain. Robust supportive oneurocognitive effects asso	d that neutral balance was reached g/day in a subset of 40 pregnant I 2023). This corresponds with an RDI ing a 20% CV and is greater than the workin et al (1966). Chen et al (2023) be balance was higher with increasing ried by trimester. On this basis, the dies is uncertain about iodine ancy. Been a proliferation of studies between iodine intake in pregnancy evelopment. Although the relationship ciency during pregnancy and global cognitive development is well-per mild iodine deficiency is less evidence of consistent adverse ociated with mild-to-moderate iodine the evidence base limited by	

Page 122 OFFICIAL

to prevent goitre during pregnancy (Pedersen et al., 1993), whereas intakes of 150 µg/day were insufficient to prevent increased thyroid volume (Glinoer, 1998).

The RDI during pregnancy was estimated at 220 µg/day, based on an EAR of 160 µg/day and applying a 20% CV.

More recently, a 2023 balance study found that neutral balance was reached with iodine intake of 202 μ g/day in a subset of 40 pregnant Chinese women (Chen et al 2023). However, Chen et al (2023) noted that estimated iodine balance was higher with increasing habitual intake and also varied by trimester. The authors also noted that missing data may have impacted findings, with 35% of participants lost to follow up by day 7. These findings correspond with an EAR of 200 μ g/day and RDI of 280 μ g/day - compared with the EAR of 160 μ g/day and RDI of 220 μ g/day suggested by Dworkin et al (1966).

Additional requirements during pregnancy have been estimated at 50 μ g/day, in iodine-sufficient individuals with adequate iodine stores (EFSA, 2014). However, data suggests that Australian and New Zealand women of childbearing age may be mildly deficient, and adequate iodine stores cannot be assumed. The total requirements for daily fetal thyroid iodine uptake is estimated at 75 μ g/day based on 100% daily turnover of iodine in the newborn thyroid, and an estimated thyroid content of 50-100 μ g in newborns (Delange, 1989; Delange and Ermans, 1991).

Although there is substantial uncertainty in the evidence, the additional data suggests that the current EAR of 160 µg/day and RDI 220 µg/day remain suitable for the Australian and New Zealand population.

inconsistent findings and significant heterogeneity (Monaghan 2021). Similarly, reviews on the effects of supplementation during pregnancy have found no significant improvement in neurocognitive outcomes with supplementation. However, it has been suggested that these findings may be due to supplementation commencing after a critical developmental period (Nazeri 2021). Reviews have concluded that there is a lack of high-quality evidence on the effect of iodine supplementation during pregnancy on child neurocognitive development (Dineva 2020; Harding 2017).

Two Australian epidemiological studies suggest that child neurocognitive outcomes may be optimised with maternal UIC ≥150 µg/L (Hynes 2017) or with maternal intakes between 185 and 365 µg/day (Sullivan et al 2024). However, the evidence remains uncertain due to imprecision and inconsistency in the evidence, and the potential for residual confounding.

In the absence of robust evidence, the AI for pregnancy can be calculated based on the AI for adults, factoring in additional lifestage requirements.

EFSA (2014) estimated additional requirements during pregnancy at 50 μ g/day, in iodine-sufficient individuals with adequate iodine stores. However, data suggests that Australian and New Zealand women of childbearing age may be mildly deficient, and adequate iodine stores cannot be assumed. Therefore, the AI during pregnancy should aim to meet the total requirements for daily fetal thyroid iodine uptake, which is estimated at 75 μ g/day based on 100% daily turnover of iodine in the newborn thyroid, and an estimated thyroid content of 50-100 μ g in newborns (Delange, 1989; Delange and Ermans, 1991).

The AI of 220 µg/day was estimated by adding the additional 75 µg/day requirement to the adult AI of 150 µg/day and rounding down by 5 µg/day.

Page 123 OFFICIAL

Zealand

lodine exposure in In Australia, the 2011-12 NHMS reported median UIC for pregnant and breastfeeding women aged 16 to 44 years of 116 μg/L and Australia and New103 μg/L respectively (ABS, 2013). These values were lower than the median UIC for all Australian women of that age reported in the 2011-12 NHMS (121 μ g/L) and are indicative of insufficient intakes during pregnancy under WHO criteria (WHO, 2013).

> Contemporary data in pregnant cohorts are lacking, although recent national data releases in reproductive-age females are also informative for this population. The 2023 NNPAS survey (ABS 2025c) reported mean intakes among females of child-bearing age of 145 μ g/day for 18 to 29 year-olds and 160 μ g/day for 30 to 49 year-olds respectively (2023 NNPAS data for pregnant cohorts are not available). The 2022-24 NHMS reported median UIC in females of child-bearing age (aged 16 to 44 years) of 101 μg/L indicating marginal population sufficiency for non-pregnant adults based on WHO epidemiologic criteria (ABS, 2025a; WHO, 2013). However, data suggests mild population deficiency among reproductive age females (aged 25 to 34 years and 35 to 44 years), with median UIC of 87 μ g/L and 97 μ g/L respectively, and more than 20% of individuals with UIC <50 in both age groups.

> These findings are echoed in data from the 2014/15 NZHS which - while based on a small cohort of pregnant women (N=110) reported median UIC of 114 μg/L (95% CI: 87, 141 μg/L), below the WHO-recommended median UIC of 150 μg/L (NZ MoH, 2020; WHO, 2013)

> Studies have also suggested deficiencies in the knowledge of - and adherence to - recommendations for iodine supplementation during pregnancy amongst Australians and New Zealanders (El-mani et al 2014, Lucas et al 2014, Martin et al 2014, Malek et al 2016, Guess et al 2017, Hine et al 2018, Reynolds and Skeaff 2017, Jin et al 2021). Furthermore, although iodine supplementation has been associated with adequate iodine status in pregnant Australian women (Hurley et al 2019), some studies suggest that supplementation may not address the neurocognitive effects of maternal deficiency in pregnancy, unless commenced during pre-conception and continued throughout pregnancy (Hynes et al 2019).

Page 124 **OFFICIAL** Benchmarking against comparable international jurisdictions Table 5 shows NRV recommendations for comparable international jurisdictions. Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

TABLE 5 - PREGNANCY IODINE REQUIREMENT RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

	Proposed ANZ AI	Current ANZ (2006)* RDI	EFSA (2014)* Al	NNR (2023)* Al	WHO (2007)*R DI	D-A-C-H (2015)* RDI
Age (years)	(μg/day)	(μg/day)	(µg/day)	(µg/day)	(µg/day)	(µg/day)
Pregnancy (all):	220	220	200	200	230	230

Irrespective of whether an EAR and RDI is retained, or an AI set, the recommended iodine intake during pregnancy aligns with values from comparable international jurisdictions, noting that the type of NRV (EAR & RDI vs AI) varies across jurisdictions. Similarly, there is some variation in the recommended intake to meet requirements during pregnancy, reflecting the differing public health nutrition contexts of each country. For example, in Germany where insufficiency remains a concern, recommendations for requirement are higher than elsewhere in Europe, reflecting the need for intakes to replenish depleted stores along with maintaining adequacy into the future. Similarly, in countries with longstanding sufficiency, recommendations during pregnancy and lactation are lower, reflecting the ability of maternal iodine stores to meet increased requirements. This may not be the case in Australia and New Zealand, where mild deficiency continues to be a concern within some populations - in particular women of reproductive age.

Page 125

(benefits and harms)

Balance of effects The current recommendations are expected to be protective of public health. There is no physiological or epidemiologic evidence to suggest that the current recommendations do not physiological or epidemiologic evidence to suggest that the reflect requirements for preventing deficiency.

> Presenting NRV recommendations for iodine as an EAR and RD preventing deficiency. may imply a degree of certainty in an NRV for which the underpinning evidence base is more limited.

dietary intakes against the EAR provides a critical measure for monitoring and evaluating public health interventions, such as mandatory fortification. This is an important consideration, given the current jodine fortification program in Australia and New Zealand. This information is critical, given that data is suggestive of persisting mild deficiency among Australian and New Zealand women of child bearing age and during pregnancy.

The proposed AI recommendation will be protective of public health and align with the current recommended RDIs. There is no current recommendations do not reflect requirements for

Revising the recommendations from an EAR and RDI to an AI communicates uncertainties in the evidence base more clearly.

However, comparison of food system modelling and estimated However, the AI cannot be used to determine the prevalence of inadequate nutrient intakes within a population. Although a low prevalence of inadequacy may be presumed in populations with mean intakes around or above the AI, for those with intakes below the Al. adequacy cannot be determined (US IoM 2000). Consequently, removing the EAR in favour of an AI impedes analysis of population inadequacy for iodine using dietary intake data compared with EAR. This analysis is often performed by researchers and policymakers - including in the Australian Health Survey.

> Dietary intake is not a reliable measure of iodine intake in Australia and New Zealand, given wide variability of iodine in the food supply, limitations in food composition data and the need to factor in use of iodised salt at the table and in cooking. In contrast, median UIC is an established biomarker for evaluating population iodine status (WHO 2007) and is routinely measured in research and in the Australian National Health Measures Survey. The 2008/09 New Zealand National Nutrition Survey measured urinary iodine concentration to assess iodine status over dietary intake data, owing to concerns about the accuracy of food composition data for estimating intake (University of Otago and NZMoH 2011). Removal of the EAR is not expected to impede population monitoring of iodine status.

Page 126 OFFICIAL However, comparison of food system modelling and estimated dietary intakes against the EAR provides a critical measure for monitoring and evaluating public health interventions, such as mandatory fortification. This analysis would be precluded, if the EAR were replaced with an AI, for the reasons stated above.

Certainty of the evidence

Requirements during pregnancy are estimated based on adult requirements and factoring in additional requirements for fetal development during pregnancy. These estimates are imprecise, and may not account individual variability in status and requirements.

There is a paucity of evidence examining the relationship between maternal iodine intake on maternal and child thyroid function and child neurodevelopment. Available studies are limited by the use of spot urinary iodine measures for quantifying intake, or extrapolation of an intake based on urinary iodine excretion, which may be imprecise or inaccurate during pregnancy.

Although there is a well-established association between severe maternal iodine deficiency during pregnancy and impaired cognitive development in the child, data on the iodine intake required to prevent cognitive impairment are inconsistent and imprecise.

The evidence for the iodine intake required to prevent maternal and child deficiency during pregnancy remains uncertain.

Values,
preferences and
feasibility
(consumers,
communities)

The current RDI or proposed AI recommendation during pregnancy is feasible to achieve, with iodine intake estimated across all foundation diets at between 233 and 261 µg/day (NHMRC, 2011)

Resource impacts Retaining the current recommendations for pregnancy is expected to have no implications for regulators, including FSANZ (food and food products) and TGA (supplements).

> Current recommendations during pregnancy are presented for While small, these changes may have significant implications each age group, although the NRV is the same for each age group. It is proposed that the revised recommendations will be the TGA (supplements). In particular, removal of the EAR may presented as a single recommendation during pregnancy. This preclude analysis comparing dietary intake modelling data will alter how recommendations are presented, but has no impact on the actual recommendations themselves.

The proposed change is nominal, replacing the current EAR and RDI with an AI to reflect uncertainty in the evidence base, and adjusting recommendations to align with new age groupings.

for regulators, including FSANZ (food and food products) and against the EAR. Preliminary discussions with FSANZ have indicated that removal of the EAR would be problematic for ongoing monitoring of the mandatory fortification program.

Views will be sought during targeted/stakeholder consultation and considered when developing final NRVs.

Other factors (health equity impacts, sustainability)

Groups at risk of deficiency include: vegans or vegetarians; individuals with low consumption of dairy, commercial bread, or iodised salt; and smokers of both tobacco and electronic cigarettes. Reduced consumption of commercial bread and bread products in Australia (ABS 2025b) and increasing interest in predominantly plant-based diets (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023) has the potential to reduce population iodine intake and should be closely monitored.

Data from Australia and New Zealand also suggests that women of reproductive age may be mildly deficient. Sufficient iodine status during pregnancy is critical for supporting child neurocognitive development. Studies suggest that knowledge about the importance of iodine supplementation during pregnancy and lactation - and adherence to supplementation recommendations - are lacking among Australians and New Zealanders (El-mani et al 2014, Lucas et al 2014, Martin et al 2014, Malek et al 2016, Guess et al 2017, Hine et al 2018, Jin et al 2021). It is critical that public health messaging communicates the importance of achieving and maintaining sufficient iodine status prior to conception and throughout pregnancy and lactation, for optimal fetal development.

If the change from an EAR and RDI to an AI is adopted to reflect uncertainty in the evidence base, care must be taken to avoid suggesting that there is uncertainty about the need for increased iodine during pregnancy, or to undermine messaging about routine iodine supplementation in this cohort.

It is recommended that pregnant and lactating women take an iodine-containing supplement to ensure adequacy. However, the affordability of iodine supplements has been identified as a barrier to use during pregnancy and lactation in Australia (Nolan et al 2022, Jorgensen et al 2016). This may have equity implications for individuals' abilities to meet nutritional recommendations during this life stage. This equity issue should be addressed by public health policy makers.

Decision

Retain the current EAR and RDI during pregnancy. Rationale:

potential harms associated with removal of the EAR - in particular impeding food modelling analysis to support public health decision making and the existing iodine fortification program - outweigh any benefits of acknowledging uncertainty in the evidence base through replacing the EAR and RDI with an AI. This is a particularly important consideration in pregnant populations, in view of the effects of maternal deficiency on the developing infant

although the evidence underpinning the EAR is not robust, several different sources of evidence estimate physiological requirements in the range 160 - 185 μg/day during pregnancy.

There is no evidence to indicate that the current recommendations are inaccurate or inadequate for meeting nutritional needs of the general, pregnant population.

During lactation

Criterion	Maintain current recommendations (EAR & RDI)			OPTION 2: Revise recommendations to Als to reflect uncertainty in evidence base		
Example		EAR	RDI		AI	
recommendation	Lactation	190 μg/day	270 μg/day	Lactation	270 μg/day	
Health evidence profile and	μg/day, based	006) EAR during lacta on the adult EAR (100	O μg/day) plus	concentration (BMIC). A 20	erence range for breast milk iodine 018 systematic review found significant	
supporting information	replacement of iodine secreted in breast milk estimated at 90 µg/day. The replacement value of 90 µg/day was lower of than the 114 µg/day estimated by the US IOM (based on Gushurst et al 1984) as the panel considered a broader range of studies on the topic (Delange e al 1984, Gushurst					
	was set at 270 A 2018 system iodine concent potentially exc	atic review concluded	V of 20% for the EAR. I that a breast milk ug/L would meet- and ents in the first 6	average breast milk volume of iodine would be required A 2014 study found that lac had median UIE of 87µg/L,	e of 0.8 L/day, an additional 120 μg/day to achieve BMIC of 150 μg/L. Stating women with a BMIC of 112 μg/L putting them below the 100 μg/L ndersen et al 2014). Based on this	

Page 129 OFFICIAL

supports the conclusions of EFSA (2014) which suggested that positive balance was reached with BMIC between 100 and 200 µg/L. Assuming an average breast milk volume of 0.8 L/day, an additional 120 μg/day of iodine would be required to achieve BMIC of 150 µg/L.

A 2014 study found that lactating women with a BMIC of 112 µg/L had median UIE of 87µg/L, putting them below the 100 µg/L threshold for sufficiency (Andersen et al 2014). Based on this finding, and assuming an average breast milk volume of 0.8 L/day, EFSA (2014) estimated daily losses to be 90 μg/day.

A 2016 crossover study examining iodine balance in 11 2016). However, it has been suggested that intakes should exceed that required for nutritional adequacy of infants during this life stage, to support accumulation of thyroidal iodine stores (Dror & Allen 2018). Furthermore, the small sample size of this study may not adequately account for individual variability in requirements.

Collectively, these studies suggest an additional requirement of 90-120 µg/day to account for iodine losses through breast milk. In adequate populations, large stores of iodine exist and intake is not required to fully compensate for iodine losses in breast milk. However, in Australia and New Zealand mild population deficiency persists in females of reproductive age. Consequently, adequate status should not be presumed, and recommendations may need to approach full replacement of losses to avoid deficiency states.

While there is uncertainty around the evidence, additional data supports maintaining an EAR of 190 μg/day and RDI of 270 µg/day.

finding, and assuming an average breast milk volume of 0.8 L/day, EFSA (2014) estimated daily losses to be 90 μg/day.

A 2016 crossover study examining iodine balance in 11 healthy, formula-fed infants aged 2 to 5 months found that null balance occurred with intakes of 70 µg/day (Dold et al 2016). However, it has been suggested that intakes should exceed that required for nutritional adequacy of infants during this life stage, to support accumulation of thyroidal iodine stores (Dror & Allen 2018). Furthermore, the small sample size of this study may not adequately account for individual variability in requirements.

Collectively, these studies suggest an additional requirement of 90-120 µg/day to account for iodine losses through breast milk. In healthy, formula-fed infants aged 2 to 5 months found that |adequate populations, large stores of iodine exist and intake is not null balance occurred with intakes of 70 μ g/day (Dold et al required to fully compensate for iodine losses in breast milk. However, in Australia and New Zealand mild population deficiency persists in females of reproductive age. Consequently, adequate status should not be presumed, and recommendations may need to approach full replacement of losses to avoid deficiency states.

> On this basis, an AI of 270 µg/day can be estimated by adding an additional 120 µg/day to the adult AI of 150 µg/day.

Page 130 OFFICIAL

Zealand

lodine exposure in In Australia, the 2011-12 NHMS reported median UIC for pregnant and breastfeeding women aged 16-44 years of 116 μg/L and Australia and New 103 µg/L respectively (ABS, 2013). These values were lower than the median UIC for all Australian women of that age reported in the 2011-12 NHMS (121 μ g/L) and are indicative of insufficient intakes during pregnancy under WHO criteria (WHO, 2013). However, the WHO criteria specify median UIC ≥100 μg/L as sufficient, and consequently the data suggest sufficiency within lactating women. However, the grouping of this population along with pregnant women makes it difficult to determine population status with accuracy.

> Contemporary national data in lactating cohorts are lacking, although the 2023 NNPAS survey (ABS 2025c) reported mean intakes among non-pregnant females of child-bearing age of 145 μg/day for 18-29 year-olds and 160 μg/day for 30-49 yearolds respectively (2023 NNPAS data for pregnant cohorts are not available). Data from the 2022-24 NHMS suggests mild population deficiency in reproductive-age females aged 25 to 34 years and 35 to 44 years (ABS, 2025a).

Studies have also suggested deficiencies in the knowledge of - and adherence to - recommendations for iodine supplementation during pregnancy amongst Australians and New Zealanders (El-mani et al 2014, Lucas et al 2014, Martin et al 2014, Malek et al 2016, Guess et al 2017, Hine et al 2018, Reynolds and Skeaff 2017).

Benchmarking against comparable international iurisdictions

Table 6 shows NRV recommendations for comparable international jurisdictions. Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

TABLE 6 - PREGNANCY IODINE REQUIREMENT RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

	Proposed Al or RDI	Current ANZ RDI (2006)	EFSA Al (2014)	NNR AI (2023)	WHO RDI (2007)	D-A-C-H RDI (2013)
Age (years)	(µg/day)	(μg/day)	(μg/day)	(μg/day)	(µg/day)	(μg/day)
Adults 18 +years:	270	270	200	200	260	260

Irrespective of whether an EAR and RDI is retained, or an AI set, there is broad alignment across jurisdictions on recommendations for iodine intake during lactation, noting that the type of NRV (EAR & RDI vs AI) varies across jurisdictions. Although there is some variation in the recommendations, this reflects different public health nutrition contexts. For example, in countries such as Australia and New Zealand, or Germany (D-A-C-H) where insufficiency remains a concern, recommendations reflect the need for intakes to approximate full replacement rather than relying on existing stores to meet requirements. In contrast, in regions with longstanding sufficiency, recommendations are lower, reflecting the ability of maternal iodine stores to meet increased requirements during lactation.

Page 131 OFFICIAL

Balance of effects (benefits and harms)

The current recommendations are protective of public health and align with the current recommended RDIs. There is no physiological or epidemiologic evidence to suggest that the current recommendations do not reflect requirements for preventing deficiency.

underpinning evidence base is more limited.

However, comparison of food system modelling and measure for monitoring and evaluating public health interventions, such as mandatory fortification. This is an important consideration, given the current iodine fortification program in Australia and New Zealand.

The proposed AI recommendation will be protective of public health and align with the current recommended RDIs. There is no physiological or epidemiologic evidence to suggest that the current recommendations do not reflect requirements for preventing deficiency.

Presenting NRV recommendations for iodine as an EAR and Revising the recommendations from an EAR and RDI to an AI RDI may imply a degree of certainty in an NRV for which the communicates uncertainties in the evidence base more accurately and transparently.

However, the AI cannot be used to determine the prevalence of estimated dietary intakes against the EAR provides a criticalinadequate nutrient intakes within a population. Although a low prevalence of inadequacy may be presumed in populations with mean intakes around or above the AI. for those with intakes below the AI, adequacy cannot be determined (US IoM 2000). Consequently, removing the EAR in favour of an AI impedes analysis of population inadequacy for iodine using dietary intake data compared with EAR. This analysis is often performed by researchers and policymakers - including in the Australian Health Survey.

> Dietary intake is not a reliable measure of iodine intake in Australia and New Zealand, given wide variability of iodine in the food supply, limitations in food composition data and the need to factor in use of iodised salt at the table and in cooking. In contrast, median UIC is an established biomarker for evaluating population iodine status (WHO 2007) and is routinely measured in research and in the Australian National Health Measures Survey. The 2008/09 New Zealand National Nutrition Survey measured urinary iodine concentration to assess iodine status over dietary intake data, owing to concerns about the accuracy of food composition data for estimating intake (University of Otago and NZMoH 2011). Consequently, removal of the EAR is not expected to impede population monitoring of iodine status.

Page 132 OFFICIAL

However, comparison of food system modelling and estimated dietary intakes against the EAR provides a critical measure for monitoring and evaluating public health interventions, such as mandatory fortification. This analysis would be precluded, if the EAR were replaced with an AI, for the reasons stated above. Certainty of the Requirements during lactation are estimated based on adult requirements and factoring in additional losses in breast milk, evidence measured using BMIC. The evidence for BMIC is inconsistent, with findings varying between populations, and over the course of lactation. The evidence for the iodine intake required to prevent maternal and child deficiency during lactation is uncertain. Values, Foundation diet modelling (NHMRC, 2011) estimates dietary iodine intake in lactating women at between 251 and 253 µg/day. preferences and This falls short of the RDI of 270 μ g/day, suggesting that the recommendations may not be fully achievable from diet alone. feasibility However, these concerns have been reflected in public health policy, with the recommendation that all Australian and New (consumers, Zealand women who are lactating should be encouraged to take an iodine supplement (NHMRC, 2010). communities) Resource impacts Retaining the current values during lactation is expected to The proposed change is nominal, replacing the current EAR and have no implications for regulators, including FSANZ (food RDI with an AI to reflect uncertainty in the evidence base, and and food products) and TGA (supplements). adjusting recommendations to align with new age groupings. Current recommendations during lactation are presented fo While small, these changes may have significant implications for each age group, although the NRV is the same for each age regulators, including FSANZ (food and food products) and the TGA group. It is proposed that the revised recommendations will(supplements). In particular, removal of the EAR may preclude be presented as a single recommendation that applies analysis comparing dietary intake modelling data against the EAR. across all ages and for the duration of lactation. This will Preliminary discussions with FSANZ have indicated that removal of the EAR would be problematic for ongoing monitoring of the alter how recommendations are presented, but has no mandatory fortification program. impact on the actual recommendations themselves. Views will be sought during targeted/stakeholder consultation and considered when developing final NRVs.

Page 133 OFFICIAL

Other factors (health equity impacts, sustainability)

Groups at risk of deficiency include: vegans or vegetarians; individuals with low consumption of dairy, commercial bread, or iodised salt; and smokers of both tobacco and electronic cigarettes. Reduced consumption of commercial bread and bread products in Australia (ABS 2025b) and increasing interest in predominantly plant-based diets (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023) has the potential to reduce population iodine intake and should be closely monitored.

If the change from an EAR and RDI to an AI is adopted to reflect uncertainty in the evidence base, care must be taken to avoid suggesting that there is uncertainty about the need for increased iodine during pregnancy, or to undermine messaging about routine iodine supplementation in this cohort.

Data from Australia and New Zealand also suggests that women of reproductive age may be mildly deficient. Sufficient iodine status during lactation is essential for child neurocognitive development. Studies suggest that knowledge about the importance of iodine supplementation during pregnancy and lactation - and adherence to supplementation recommendations - are lacking among Australians and New Zealanders (El-mani et al 2014, Lucas et al 2014, Martin et al 2014, Malek et al 2016, Guess et al 2017, Hine et al 2018, Jin et al 2021). It is critical that public health messaging communicates the importance of achieving and maintaining sufficient iodine status prior to conception and throughout pregnancy and lactation, for optimal fetal development.

Dietary modelling suggests that the current and proposed recommendations may be unable to be met from diet alone. However, the affordability of iodine supplements has been identified as a barrier to use during pregnancy and lactation in Australia (Nolan et al 2022, Jorgensen et al 2016). This may have equity implications for the ability of individuals to meet nutritional recommendations during this life stage. This equity issue should be addressed by public health policy makers.

Decision

Retain existing EAR and RDI recommendations. Rationale:

Maintaining the EAR and RDI (vs shifting to an AI) is important as it provides a critical mechanism for public health evaluation

Although the evidence is uncertain, studies collectively suggest additional requirements between 90-120 µg/day to account for iodine losses through breast milk.

There is no evidence to indicate that the current recommendations are inaccurate or inadequate for meeting nutritional needs of lactating women and their infants.

Page 134 OFFICIAL

Children and adolescents

Criterion	<u>OPTION 1</u> :	OPTION 2:
	Present NRVs for current and revised age groupings to provide options for different stakeholders/users	Revise recommendations to AIs to reflect uncertainty in evidence base Present NRVs for current and revised age groupings to provide greater options for different stakeholders/users

Page 135

Example	NRVs age groupings:	EAR	RDI	NRVs age groupings:	AI
recommendation		(µg/day)	(µg/day)		(μg/day)
	All			All	
	1 to under 4 years	65	90	1 to under 4 years	90
	4 to under 9 years	65	90	4 to under 9 years	90
	Males			Males	
	9 to under 14 years	<i>75</i>	120	9 to under 14 years	120
	14 to under 18 years	95	150	14 to under 18 years	150
	Females			Females	
	9 to under 14 years	<i>75</i>	120	9 to under 14 years	120
	14 to under 18 years	95	150	14 to under 18 years	150
	Age groupings by school-age:	EAR	RDI	Age groupings by school-age:	Al
		(µg/day)	(µg/day)		(μg/day)
	All			All	
	12 to under 24 months	65	90	12 to under 24 months	90
	2 to under 5 years	65	90	2 to under 5 years	90
	Males			Males	
	5 to under 12 years	70	110	5 to under 12 years	110
	12 to under 18 years	90	140	12 to under 18 years	140
	Females			Females	
	5 to under 12 years	70	110	5 to under 12 years	110
	12 to under 18 years	90	140	12 to under 18 years	140

Page 136 OFFICIAL

Health evidence information

The 2006 NRV recommendations for children and profile and supporting adolescents are based on balance studies conducted in small numbers of children of varying age. This includes:

> A 4-day balance study in seven previously malnourished children aged 1.5 to 2.5 who had been nutritionally rehabilitated (Ingenbleek and Malvaux 1974). The EAR of 65 µg/day was set based on there being a positive balance of 19 µg/day observed with intakes of 63.5 µg/day

> Extracting results of two 8-year-old participants from a 1969 balance study (Malvaux et al. 1969) with intakes of 20 or 40 µg/day, resulting in negative balance (-23 or -26 μg/day respectively), from which the EAR of 65 μg/day in children aged 4 - 8 was set.

the EARs for children aged 9-13 years and 14 to 18 years were extrapolated from adult values

The EARs for younger children have been derived from very small samples, or by extracting data for a small number of individuals within a broader sample. These methods lack precision and methodological rigour, and are A study of 7,599 European school children aged 6-12 years found unreliable for estimating individual requirements.

Consequently, revised EAR and RDIs were calculated by extrapolation from adult values, based on metabolic body weight, using the formula:

Estimated EAR_{child} = Estimated EAR_{adult} x

[Weight_{child} / Weight_{adult}] $^{0.75}$ x [1 + growth factor]

Inputs were as follows:

EAR_{adult} = 100 μg/day

Weight adult = 62.9 kg

Growth factors (GF) and reference weights were as per the current NRVs Methodological Framework (NHMRC,

There is a lack of data on iodine requirements in childhood and adolescents. and current recommendations are based on data from select individuals within balance studies of short duration and small sample sizes. These studies may be unreliable for estimating individual requirements.

Goitre prevalence in children aged 6 to 12 years is an established measure of long-term population iodine status, with prevalence >5% indicative of population-level deficiency (WHO 2007). However, it should be noted that thyroid volume can take months or even years to return to normal after deficiency is corrected. Consequently, goitre prevalence may be an unreliable measure, in populations where deficiency has been recently corrected, and thyroid volumes have not yet returned to normal. Thyroid assessment methods also vary considerably, and the method selected can have substantial implications for case finding. Consequently, consideration was limited to studies conducted in regions comparable to the Australian or New Zealand context, for which robust measurement methods were reported, and without recent history of deficiency.

that a median UIC of 100 µg/L was associated with total goitre prevalence of 2-3%, once values were adjusted for age and bodysurface area (Delange et al 1997). This study forms the basis for the proposed adult AI recommendation of 150 µg/day.

In the Australian and New Zealand context, studies measuring median UIC and total goitre prevalence in children have reported mixed results. One study in 324 Australian children aged 5 to 13 years residing on the Central Coast of NSW reported a goitre prevalence of 0% with median UIC of 82µg/L (Guttikonda et al . 2003). During a similar time period, but in Melbourne, a study in 577 older school children aged 11 to 18 years reported a goitre prevalence of 19% with median UIC of 70 µg/L (McDonnell et al. 2003).

Page 137 OFFICIAL 2025), using contemporary 'ideal body weight' data from the Australian Bureau of Statistics.

Calculated values were rounded to ensure the requirements of all children within an age bracket would be met, to smooth out transitions between age groups. EAR calculations are shown in Table 7.

TABLE 7 - CALCULATIONS AND ROUNDING FOR EXTRAPOLATING ADULT EAR TO CHILDREN AND ADOLESCENTS

Age group	Weight child (kg)	GF	Calculated EAR (µg/day)	Rounded /Proposed EAR (µg/day)
NRVs age gro	upings:			
1 to <4y	13	0.25	38.3	65
4 to <9y	22.4	0.09	50.2	65
9 to <14y	40.7	0.13	81.5	75
14 to <18y	57.6	0.08	101.1	95
Age (grouped	by school	-age):		
12 to <24mo	10.6	0.44	37.9	65
2 to <5y	15.9	0.12	39.9	65
5 to <12y	28.6	0.12	62.0	70
12 to <18y	54.5	0.07	96.1	90
The RDI was tl	hen calcula	ted app	olying a CV of	f 20%, and

rounded as follows:

Als for children and adolescents were extrapolated from the adult Al (150 µg/day) based on metabolic body weight, using the formula:

Estimated AI_{child} = Estimated AI_{adult} x

[Weight_{child} / Weight_{adult}] $^{0.75}$ x [1 + growth factor]

Inputs were as follows:

Al_{adult} = 150 μg/day

Weight _{adult} = 62.9 kg

Growth factors (GF) and reference weights were as per the current NRVs Methodological Framework (NHMRC, 2025), using contemporary 'ideal body weight' data from the Australian Bureau of Statistics.

Calculated values were rounded up to ensure the requirements of older children within each age bracket were met, and to align proposed Als with current intakes and existing RDI recommendations. AI calculations are shown in Table 8.

TABLE 8 - CALCULATIONS AND ROUNDING FOR EXTRAPOLATING ADULT AI TO CHILDREN AND ADOLESCENTS

Age group NRVs age grou	Weight child (kg) upings:	GF	Calculated Al μg/day	Round- ing	Rounded /Proposed Al µg/day
1 to <4y	13	0.25	57.5	32.5	90
4 to <9y	22.4	0.09	75.4	14.6	90
9 to <14y	40.7	0.13	122.3	-2.3	120
14 to <18y	57.6	0.08	151.6	-1.6	150

Page 138 OFFICIAL

Age group	EAR child μg/day	cv	RDI (calculated) μg/day	Proposed RDI (rounded) μg/day
NRVs age g	roupings:			
1 to <4y	65	20%	91	90
4 to <9y	65	20%	91	90
9 to <14y	75	20%	105	120
14 to <18y	95	20%	133	150
Age (group	ed by sch	ool-age	e):	
12 to <24mo	65	20%	91	90
2 to <5y	65	20%	91	90
5 to <12y	70	20%	98	110
12 to <18y	90	20%	126	140

This represents a change to methods for calculating the EAR and RDI for children and adolescents. However, the EAR and RDI recommendations are not changed, except for the additional presentation of NRVs for school age

groupings.

Age (grouped by	school-a	age):			
12 to <24mo	10.6	0.44	56.8	33.2	90
2 to <5y	15.9	0.12	59.9	30.1	90
5 to <12y	28.6	0.12	93.0	17.0	110
12 to <18y	54.5	0.07	144.1	-4.1	140

Page 139 OFFICIAL

lodine exposure in Australia and New Zealand

The 2022-24 NHMS reported that children aged 5 to 17 were iodine-sufficient, with a median UIC of 171 μg/L and only 8% with UIC <50 μg/L (ABS, 2025a). Urinary iodine measures were highest in children aged 5 to 11 years (median UIC 185 μg/L for males; 188 μg/L for females).

National dietary intake data from the 2023 National Nutrition and Physical Activity Survey (NNPAS; ABS 2025c) and 2011-13 Australian Health Survey (AHS; ABS 2015) are presented in Table 9.

TABLE 9 - INTAKE IN CHILDREN AND ADOLESCENTS, NNPAS (ABS, 2025C) AND AHS 2011-13 (ABS, 2015)

	2023 NNPAS (ABS, 2025c) Males Females		2011-13 AHS (ABS, 2015)						
			Males		Females				
Age groups in years (2023 / 2011-13)	Mean intake (μg/day)	Mean intake (μg/day)	Mean (95% CI) Intake (µg/day)	% less than EAR	Mean (95% CI) Intake (µg/day)	% less than EAR			
2-4 yr/2-3 yr	152	143	157 (100 - 222)	0.1%	141 (88 - 202)	0.5%			
5-11 yr/4-8 yr	170	105	164 (106 - 231)	0.1%	148 (93 - 210)	0.3%			
5-11 yr/9-13 yr	176	165	190 (111 - 285)	0.3%	169 (102 - 247)	0.5%			
12 - 17 yr/14-18 yr	220	161	205 (123 - 303)	0.8%	153 (91 - 229)	6.4%			

In New Zealand, population data do not capture intake or median UIC for children aged under 15 years. However, a 2011 study of 147 children aged 8-10 years post-fortification reported population sufficiency, with a median UIC of 113 μg/L, and 12% of children with UIC <50 μg/L (Skeaff & Lonsdale-Cooper, 2013). A 2015 study in 415 children aged 8 to 10 echoed these findings, reporting a median UIC of 116 μg/L and 5% with UIC <50 μg/L (Jones et al 2016). A smaller study in 84 children aged 9 – 11 estimated intake from UIE at 74 μg/day; below the recommended dietary intake of 120 μg/day for this age group (Peniamina et al 2019).

Page 140 OFFICIAL

comparable international iurisdictions

Benchmarking against Table 10 shows NRV recommendations for comparable international jurisdictions. Values have been adjusted using a weighted average calculation, to align with the proposed age groupings (denoted by * in the table). Where a jurisdiction specifies an EAR and RDI, the RDI has been extracted for comparison purposes.

TABLE 10 - CHILD AND ADOLESCENT IODINE REQUIREMENT RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

Age (years)	Proposed Al or RDI (µg/day)	Current ANZ (2006)* RDI (µg/day)	EFSA (2014)* Al (μg/day)	NNR (2023)* Al (μg/day)	WHO (2007)*RDI (µg/day)	D-A-C-H (2013)* RDI (μg/day)
NRVs age groupings:						
1 to under 4 years	90	90	90	100	90	100 - 120
4 to under 9 years	90	90	90	100	108*	156*
9 to under 14 years	120	120	108*	115*	132*	176*
14 to under 18 years	150	150	128*	129*	150	200
Age (grouped by school-	-age):					
12 to under 24 months	90	90*	90	100	90	100
2 to under 5 years	90	90*	90	100	90	107*
5 to under 12 years	110	103*	94*	103*	120	146*
12 to under 18 years	140	140*	125*	128*	145*	197*

Irrespective of whether an EAR and RDI is retained, or an AI set, there is good alignment between the proposed values and recommended iodine intake for children and adolescents in comparable international jurisdictions. The type of NRV (EAR & RDI vs AI) varies across jurisdictions, and there is some variation in the recommended intakes for each age group, reflecting the differing public health nutrition contexts of each country. Values in 5 to under 12 year-olds are on the higher end of comparable recommendations, however this reflects the scaling up of this recommendation to ensure that the needs of older children in the age band continue to be met.

Page 141 **OFFICIAL**

Balance of effects (benefits and harms)

The current recommendations are protective of public health. There is no physiological or epidemiologic not reflect requirements for preventing deficiency.

Presenting NRV recommendations for iodine as an EAR and RDI may imply a degree of certainty in an NRV for which the underpinning evidence base is more limited.

However, comparison of food system modelling and estimated dietary intakes against the EAR provides a interventions, such as mandatory fortification. This is an important consideration, given the current jodine fortification program in Australia and New Zealand.

The proposed AI recommendations will be protective of public health and align with the current recommended RDIs. There is no evidence to suggest that the current recommendations do physiological or epidemiologic evidence to suggest that the current recommendations do not reflect requirements for preventing deficiency.

> Revising the recommendations from an EAR and RDI to an AI communicates uncertainties in the evidence base more clearly.

However, the AI cannot be used to determine the prevalence of inadequate nutrient intakes within a population. Although a low critical measure for monitoring and evaluating public healthprevalence of inadequacy may be presumed in populations with mean intakes around or above the AI, for those with intakes below the AI, adequacy cannot be determined (US IoM 2000). Consequently, removing the EAR in favour of an AI impedes analysis of population inadequacy for iodine using dietary intake data compared with EAR. This analysis is often performed by researchers and policymakers - including in the Australian Health Survey.

> Dietary intake is not a reliable measure of iodine intake in Australia and New Zealand, given wide variability of iodine in the food supply, limitations in food composition data and the need to factor in use of iodised salt at the table and in cooking. In contrast, median UIC is an established biomarker for evaluating population iodine status (WHO 2007) and is routinely measured in research and in the Australian National Health Measures Survey. The 2008/09 New Zealand National Nutrition Survey used urinary iodine measures of status over dietary intake data, owing to concerns about the accuracy of food composition data for estimating intake (University of Otago and NZMoH 2011). Consequently, removal of the EAR is not expected to impede population monitoring of iodine status.

Page 142 OFFICIAL

) 1	dietary ir nonitorii nandato	ntakes ag ng and e ory fortifi	gainst the valuating cation. T	e EAR programme g public h his analy:	ovides a nealth int sis would	elling and critical metervention dependent of the preclusions of the constant
Certainty of the evidence	Requirements for children and adolescents are estimated based on scaling adult requirements, due to a lack of available evidence in children and adolescents.											
	The evidence	for the iodi	ne intake	required	to for n	ormal gr	owth and	d develo	pment is	uncertai	n.	
and feasibility (consumers,	feasible to ac											
communities)	TABLE 11 - CH	Core food groups^		ESCENT	Four	10DELLI ndation - overall		A (NHMF -based		a-based	Lacto-	ovo-vego
communities)		Core food	AGH		Four	ndation				a-based	Lacto-d	ovo-vego
communities)	Age group (years)	Core food	AGF Pers	IE 98	Four diets	ndation				a-based Girls	Lacto-d	ovo-vego Girls
communities)	Age group	Core food groups^	AGF Pers	IE 98 sons	Four diets	ndation - overall	Rice	-based	Pasta			
communities)	Age group (years)	Core food groups^	AGF Pers	IE 98 sons	Four diets	ndation - overall Girls	Rice	-based	Pasta			
communities)	Age group (years) 13-23 mo	Core food groups^	AGF Pers	IE 98 sons	Four diets	ndation - overall Girls 96	Rice	-based	Pasta		Boys	Girls
communities)	Age group (years) 13-23 mo 2 - 3 yr	Core food groups [^] Persons	AGH Pers Upper	IE 98 sons Lower	Four diets -	ndation - overall Girls 96 119	Rice	-based	Pasta		Boys	Girls
communities)	Age group (years) 13-23 mo 2 - 3 yr 4 - 8 yr	Core food groups^ Persons	AGH Pers Upper	Sons Lower 227 273	Four diets -	Girls 96 119	Rice Boys	-based Girls	Pasta Boys	Girls	Boys 124 132	Girls 102 109
communities)	Age group (years) 13-23 mo 2 - 3 yr 4 - 8 yr 9 - 11 yr	Core food groups^ Persons	AGH Pers Upper	IE 98 sons Lower	Four diets -	Girls 96 119 133 189	Rice Boys	-based Girls	Pasta Boys	Girls 158	Boys 124 132 170	Girls 102 109 169

Page 143

Resource impacts	including additional values aligned with school-age	The proposed change Is nominal, re"laci'g the current EAR and RDI with an AI to reflect uncertainty in the evidence base, and adjusting recommendations to align with new age groupings. While small, these changes may have significant implications for regulators, including FSANZ (food and food products) and the TGA (supplements). In particular, removal of the EAR may preclude analysis comparing dietary intake modelling data against the EAR. Preliminary discussions with FSANZ have indicated that removal of the EAR would be problematic for ongoing monitoring of the mandatory fortification program. The FSANZ regulatory RDI for iodine for ages 1-3 is 70µg/day (current RDI and proposed AI 90 µg/day). Views will be sought during targeted/stakeholder consultation and considered when developing final NRVs.					
Other factors (health equity impacts, sustainability)							
Decision	The state of the s	outweigh the benefits of acknowledging uncertainty in the ed, and evidence used to derive current EAR from small balance is not sufficiently robust. Scaling / extrapolation of adult values propriate approach.					

Page 144 OFFICIAL

References

Andersen SL, Moller M and Laurberg P. 2014. Iodine concentrations in milk and in urine during breastfeeding are differently affected by maternal fluid intake. *Thyroid*, 24: 764-772

Aquaron R, Delange F, Marchal P, Lognone V and Ninane L, 2002. Bioavailability of seaweed iodine in human beings. Cellular and Molecular Biology, 48, 563-569.

Australian Bureau of Statistics (ABS) 2013. *Iodine* [Internet]. Data source: 2011-12 National Health Measures Survey. Canberra: December 11 [accessed 22 July 2024]. Available from: https://www.abs.gov.au/articles/iodine

Australian Bureau of Statistics (ABS). 2015. 2011-13 Australian Health Survey: Usual Nutrient Intakes. Released 06/03/2015. Available from: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/usual-nutrient-intakes/latest-release [Accessed 2 June 2025]

Australian Bureau of Statistics (ABS). 2025a. 2022-24 National Health Measures Survey: Nutrient biomarkers. Released 31/03/2025. Available from https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-measures-survey/latest-release#nutrient-biomarkers

Australian Bureau of Statistics (ABS). 2025b. 2023-24 Apparent Consumption of Selected Foodstuffs, Australia. Released 281/03/2025. Available from https://www.abs.gov.au/statistics/health/health-conditions-and-risks/apparent-consumption-selected-foodstuffs-australia/2023-24

Australian Bureau of Statistics (ABS). 2025c. 2023 National Nutrition and Physical Activity Survey (NNPAS). Released 05/09/2025. Available from: https://www.abs.gov.au/statistics/health/food-and-nutrition/food-and-nutrients/2023#selected-micronutrients-and-caffeine [Accessed 15 September 2025]

Australian Institute of Health and Welfare (AIHW) 2016. Monitoring the health impacts of mandatory folic acid and iodine fortification. Cat. No. PHE 208. Canberra: AIHW

Australian Institute of Health and Welfare (AIHW) 2024. National Drug Strategy Household Survey, 2022-2023. Cat no. PHE 340. Canberra: AIHW.

Blomhoff R, Andersen R, Arnesen, E et al. 2023. Nordic Nutrition Recommendations 2023. Nordic Council of Ministers, Copenhagen. Available from https://pub.norden.org/nord2023-003/nord2023-003.pdf. [Accessed 5 December 2024]

Chen W, Wang W, Gao M, Chen Y, Guo W, et. Al. 2023. Iodine Intakes of <150 μg/day or >550 μg/day are Not Recommended during Pregnancy: A Balance Study. *The Journal of Nutrition,* 153 (7), pp. 2041-2050

Colzani Rfang SLAlex Sbraverman LE The effect of nicotine on thyroid function in rats. Metabolism. 1998;47154-157

D-A-CH (2015). German Nutrition Society, Austrian Nutrition Society, Swiss Nutrition Society (eds.). Dietary Reference Values. 2nd version of the 1st edition 2015, Neuer Umschau Buchverlag.

Delange F, Bourdoux P, Vo Thi LD, Ermans AM, Senterre J. 1984. Negative iodine balance in preterm infants. Ann Endocrinol 45:77.

Delange F, Burgi H. 1989. Iodine deficiency disorders in Europe. Bull World Health Organ 67:317-325.

Delange F, Ermans AM. 1991. Iodine deficiency. In: Braverman LE, editor; Utiger RD, editor., eds. *Werner and Ingbar's the Thyroid: A Fundamental and Clinical Text*, 6th ed. Philadelphia: JD Lippincott.

Delange F, Benker G, Caron P, Eber O, Ott W, Peter F, Podoba J, Simescu M, Szybinsky Z, Vertongen F, Vitti P, Wiersinga W, Zamrazil V. Thyroid volume and urinary iodine in European schoolchildren: standardization of values for assessment of iodine deficiency. Eur J Endocrinol. 1997 Feb;136(2):180-7. Doi: 10.1530/eje.0.1360180. PMID: 9116913.

Dineva M, Fishpool H, Rayman MP, Mendis J, Bath SC. 2020. Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. *Am J Clin Nutr.* 112(2):389-412.

Dold S, Zimmermann MB, Baumgartner J, Davaz T, Galetti V, Braegger C, Andersson M. A dose-response crossover iodine balance study to determine iodine requirements in early infancy. Am J Clin Nutr 2016;104:620-8.

Dror DK, Allen LH. Overview of Nutrients in Human Milk. Adv Nutr. 2018 May 1;9(suppl_1):278S-294S. doi: 10.1093/advances/nmy022. PMID: 29846526; PMCID: PMC6008960.

Dworkin HJ, Jacquez JA, Beierwaltes WH. 1966. Relationship of iodine ingestion to iodine excretion in pregnancy. *J Clin Endocrinol Metab* 26:1329-1342.

El-mani S, Charlton KE, Flood VM and Mullan J. Folic acid and iodine supplementation in pregnant women. *Nutrition & Dietetics*, 2014. 71: 236-244. https://doi.org/10.1111/1747-0080.12132

European Food Safety Authority (EFSA) Panel on Panel on Dietetic Products Nutrition and Allergies, 2014. Scientific Opinion on Dietary Reference Values for iodine. EFSA Journal 2014;12(5):3660, 57 pp. doi:10.2903/j.efsa.2014.3660

Food and Agricultural Organization of the United Nations: World Health Organization (FAO:WHO). 2001. Human vitamin and mineral requirements. Report of a joint FAO:WHO expert consultation, *Bangkok, Thailand. Rome: Food and Agricultural Organization of the United Nations*

Fisher DA and Oddie TH, 1969a. Thyroid iodine content and turnover in euthyroid subjects: validity of estimation of thyroid iodine accumulation from short-term clearance studies. Journal of Clinical Endocrinology and Metabolism, 29, 721-727.

Fisher DA and Oddie TH, 1969b. Thyroidal radioiodine clearance and thryoid iodine accumulation:contrast between random daily variation and population data. Journal of Clinical Endocrinologyand Metabolism, 29, 111-115.

Flieger J, Kawka J, Tatarczak-Michalewska M. Levels of the Thiocyanate in the Saliva of Tobacco Smokers in Comparison to e-Cigarette Smokers and Nonsmokers Measured by HPLC on a Phosphatidylcholine Column. Molecules. 2019 Oct 21;24(20):3790. Doi: 10.3390/molecules24203790. PMID: 31640293; PMCID: PMC6832790.

Gibson RS. Principles of nutritional assessment. New York: Oxford University Press. 1991:749-766.

Glinoer D. 1998. Iodine supplementation during pregnancy: Importance and biochemical assessment. *Exp Clin Endocrinol Diabetes* 106:S21

Guess K, Malek L, Anderson A, Makrides M, Zhou SJ. Knowledge and practices regarding iodine supplementation: A national survey of healthcare providers. *Women and Birth*, 2017. Vol. 30 (1), pp. e56-e60.

Gushurst CA, Mueller JA, Green JA, Sedor F. 1984. Breast milk iodine: Reassessment in the 1980s. Pediatrics 73:354-357

Guttikonda K, Travers CA, Lewis PR, Boyages S. Iodine deficiency in urban primary school children: a cross-sectional analysis. Med J Aust. 2003 Oct 6;179(7):346-8. Doi: 10.5694/j.1326-5377.2003.tb05589.x. PMID: 14503896.

Harding KB, Peña-Rosas JP, Webster AC, Yap CM, Payne BA, Ota E, De-Regil LM. 2017. Iodine supplementation for women during the preconception, pregnancy and postpartum period. *Cochrane Database Syst Rev.* 3(3):CD011761.

Hine T, Zhao Y, Begley A, Skeaff S, Sherriff J. Iodine-containing supplement use by pregnant women attending antenatal clinics in Western Australia. Aust N Z J Obstet Gynaecol. 2018 Dec;58(6):636-642

Hurley, S., Eastman, C. J., & Gallego, G. (2019). The impact of mandatory iodine fortification and supplementation on pregnant and lactating women in Australia. Asia Pacific Journal of Clinical Nutrition, 28(1), 15-22. https://search.informit.org/doi/10.3316/ielapa.264165338344088

Hynes KL, Otahal P, Burgess JR, Oddy WH, Hay I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory Processing Speed and Working Memory. Nutrients. 2017 Dec 13;9(12):1354. Doi: 10.3390/nu9121354.

Hynes KL, Seal JA, Otahal P, Oddy WH & Burgess JR. Women remain at risk of iodine deficiency during pregnancy: the importance of iodine supplementation before conception and throughout gestation. *Nutrients* 2019 11 172. (https://doi.org/10.3390/ null010172)

Ingenbleek Y, Malvaux P. 1974. lodine balance studies in protein-calorie malnutrition. *Arch Dis Child* 49:305-309.

Jahreis G, Hausmann W, Kiessling G, Franke K and Leiterer M, 2001. Bioavailability of iodine from normal diets rich in dairy products-results of balance studies in women. Experimental and Clinical Endocrinology and Diabetes, 109, 163-167.

Jin Y, Coad J, Zhou SJ, Skeaff S, Benn C, Brough L. 2021. Use of Iodine Supplements by Breastfeeding Mothers Is Associated with Better Maternal and Infant Iodine Status. *Biol Trace Elem Res.*199(8):2893-2903.

Johnson LA, Ford HC, Doran JM, Richardson VF. A survey of the iodide concentration of human milk. NZ Med J 1990;103:393-4

Jones E, McLean R, Davies B, Hawkins R, Meiklejohn E, Ma ZF, Skeaff S. Adequate Iodine Status in New Zealand School Children Post-Fortification of Bread with Iodised Salt. Nutrients. 2016 May 16;8(5):298..

Kantar (2022) Better Futures 2022; available at https://www.sbc.org.nz/wp-content/uploads/2022/07/2022-Better-Futures-Report-Version-23-March-FINAL.pdf (accessed 1 July 2025).

Knudsen N, Bülow I, Laurberg P, Ovesen L, Perrild H, Jørgensen T. Association of Tobacco Smoking With Goiter in a Low-Iodine-Intake Area. *Arch Intern Med.* 2002;162(4):439-443. Doi:10.1001/archinte.162.4.439

Kohrle, J. (1999). The trace element selenium and the thyroid gland. Biochimie. 81:527-533.

Lucas CJ, Charlton KE, Brown L, Brock E and Cummins L. Antenatal shared care: Are pregnant women being adequately informed about iodine and nutritional supplementation?. *Aust N Z J Obstet Gynaecol*, 2014, 54: 515-521

Malek L, Umberger W, Makrides M, Zhou SJ. Poor adherence to folic acid and iodine supplement recommendations in preconception and pregnancy: a cross-sectional analysis. Aust N Z J Public Health. 2016 Oct;40(5):424-429. Doi: 10.1111/1753-6405.12552. Epub 2016 Aug 14. PMID: 27523027.

Malvaux P, Beckers C, de Visscher M. 1969. Iodine balance studies in nongoitrous children and in adolescents on low iodine intake. J Clin Endocrinol Metab 29:79-84.

Martin JC, Savige GS and Mitchell EKL. Health knowledge and iodine intake in pregnancy. *Aust N Z J Obstet Gynaecol*, 2014. 54: 312-316. https://doi.org/10.1111/ajo.12201

McDonnell CM, Harris M and Zacharin MR. 2003. Iodine deficiency and goitre in schoolchildren in Melbourne, 2001. *Med J Aust* 178 (4): 159-162. Published online: 17 February 2003

Monaghan AM, Mulhern MS, McSorley EM, Strain JJ, Dyer M, van Wijngaarden E, Yeates AJ. Associations between maternal urinary iodine assessment, dietary iodine intakes and neurodevelopmental outcomes in the child: a systematic review. Thyroid Res. 2021 Jun 7;14(1):14. Doi: 10.1186/s13044-021-00105-1. PMID: 34099006; PMCID: PMC8182912.

National Health and Medical Research Council (NHMRC), 2010. Public Statement: Iodine supplementation for Pregnant and Breastfeeding Women, available from: https://www.nhmrc.gov.au/about-us/publications/iodine-supplementation-pregnant-and-breastfeeding-women [Accessed: 30 July 2024]

Page 148 OFFICIAL

National Health and Medical Research Council. 2011 [Report prepared by Byron A, Baghurst K, Cobiac L, Baghurst P, Magarey A on behalf of Dietitians Association of Australia]. 2008. A modelling system to inform the revision of the Australian Guide to Healthy Eating. Available from:

https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55c_dietary_guidelines_food_modelling.pdf [Accessed 2 June 2025]

Nazeri P, Shariat M, Azizi F. 2021. Effects of iodine supplementation during pregnancy on pregnant women and their offspring: a systematic review and meta-analysis of trials over the past 3 decades. *Eur J Endocrinol*. 184(1):91-106.

New Zealand Ministry of Health (NZ MoH), 2020. Biomedical Data Explorer 2014/15: New Zealand Health Survey - Iodine data files, available from: minhealthnz.shinyapps.io/nz-health-survey-2014-15-biomedical/ (accessed 30 July 2024)

Nolan, M; Gorsuch, C; Graham, A; Hynes, Kristen; Reardon, M. 2022. Barriers and enablers to maternal iodine supplement use in Tasmania. University Of Tasmania. Report.

https://figshare.utas.edu.au/articles/report/Barriers_and_enablers_to_maternal_iodine_supplement_use_in_Tasm (accessed 12 August 2025)

Pedersen KM, Laurberg P, Iversen E, Knudsen PR, Gregersen HE, Rasmussen OS, Larsen KR, Eriksen GM, Johannesen PL. 1993. Amelioration of some pregnancy-associated variations in thyroid function by iodine supplementation. *J Clin Endocrinol Metab* 77:1078-1083.

Peniamina R, Skeaff S, Haszard JJ, McLean R. Comparison of 24-h Diet Records, 24-h Urine, and Duplicate Diets for Estimating Dietary Intakes of Potassium, Sodium, and Iodine in Children. *Nutrients*. 2019; 11(12):2927. https://doi.org/10.3390/nu11122927.

Reynolds A and Skeaff SA. Maternal adherence with recommendations for folic acid and iodine supplements: A cross-sectional survey. *Aust N Z Obstet Gynaecol,* 2018. Vol 58, pp. 125-127.

Riverola C, Harrington S, Ruby M, Dedehayir O, Morris R, Laurence C. 2023. Consumer views on plant-based foods: Australian sample. Griffith Research Repository, available from: https://research-repository.griffith.edu.au/server/api/core/bitstreams/f238a2f5-7201-4af0-8159-09eb991fa604/content (accessed 1 July 2025)

Roy Morgan Research (2016) Vegetarianism on the Rise in New Zealand [press release]; available at https://www.roymorgan.com/findings/vegetarianism-on-the-rise-in-new-zealand (accessed 1 July 2025).

Shields B, Hill A, Bilous M, Knight B, Hattersley AT, Bilous RW, Vaidya B. Cigarette smoking during pregnancy is associated with alterations in maternal and fetal thyroid function. J Clin Endocrinol Metab. 2009 Feb;94(2):570-4. Doi: 10.1210/jc.2008-0380. Epub 2008 Nov 18. PMID: 19017761.

Skeaff SA, Lonsdale-Cooper E. Mandatory fortification of bread with iodised salt modestly improves iodine status in schoolchildren. Br J Nutr. 2013 Mar 28;109(6):1109-13. Doi: 10.1017/S0007114512003236. Epub 2012 Jul 31. PMID: 22849786.

Page 149 OFFICIAL

Sullivan TR, Best KP, Gould J, Zhou SJ, Makrides M, Green TJ. 2024. Too Much Too Little: Clarifying the Relationship Between Maternal lodine Intake and Neurodevelopmental Outcomes, *The Journal of Nutrition*, 154 (1): 185-190

Tan L, Tian X, Wang W, Guo X, Sang Z, Li X, Zhang P, Sun Y, Tang C, Xu Z, Shen J, Zhang W. Exploration of the appropriate recommended nutrient intake of iodine in healthy Chinese women: an iodine balance experiment. Br J Nutr. 2019 Mar 14;121(5):519-528.

Thomson CD, Smith TE, Butler KA, Packer MA. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med Biol. 1996 Dec;10(4):214-22. Doi: 10.1016/S0946-672X(96)80038-1. PMID: 9021672.)

Thomson, C., Woodruffe, S., Colls, A. *et al.* Urinary iodine and thyroid status of New Zealand residents. *Eur J Clin Nutr* **55**, 387-392 (2001). https://doi.org/10.1038/sj.ejcn.1601170

Thomson CD. Selenium and iodine intakes and status in New Zealand and Australia. Br J Nutr. 2004 May;91(5):661-72. Doi: 10.1079/BJN20041110. PMID: 15137917.

United Kingdom Scientific Advisory Committee on Nutrition (UK SACN), 2014. SACN Statement on Iodine and Health. https://assets.publishing.service.gov.uk/media/5a7e469ced915d74e62253f3/SACN_lodine_and_Health_2014.pdf [Accessed 22 July 2024]

University of Otago and New Zealand Ministry of Health (NZMoH). 2011. Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey. Wellington: Ministry of Health. https://www.health.govt.nz/system/files/2011-10/methodology-report.pdf (Accessed 11 August 2025)

US IOM (Institute of Medicine) Subcommittee on Interpretation and Uses of Dietary Reference Intakes. IoM Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington (DC): National Academies Press (US); 2000. 5, Using the Adequate Intake for Nutrient Assessment of Groups. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222886/

US IOM (Institute of Medicine), 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington DC, USA, 797 pp.

World Health Organization (WHO). 2007. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd ed. World Health Organization. https://iris.who.int/handle/10665/43781 (Accessed 30 July 2024)

World Health Organization (WHO). 2013. Urinary iodine concentrations for determining iodine status in populations, Vitamin and Mineral Nutrition Information System. Geneva: *World Health Organization* https://www.who.int/publications/i/item/WHO-NMH-NHD-EPG-13.1 (Accessed 31 July 2024)

Yang, F. Y., Tang, B. D., Niu, C. L., et al. (1997). A study for endemic goiter control with combined iodine and selenium supplementation. *Chin. J. Contr. End. Dis.* 16:214-218.

Zimmermann, M., Adou, P., Torresani, T., Zeder, C. and Hurrell, R. (2000). Persistence of goiter despite oral iodine supplementation in goitrous children with iron deficiency anemia in Cote d'Ivoire. *Am. J. Clin. Nutr.* 71: 88-93.

Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet 2008; 372(9645): 1251-62.

Page 151 OFFICIAL

lodine - Upper Levels

Background

Iodine - function and dietary sources

lodine is a mineral that is found in soil and ocean waters and is an essential nutrient required for synthesis of thyroid hormones such as thyroxine (T4) and triiodothyronine (T3). Iodine deficiency is associated with thyroid dysfunction, thyroid disease, and adverse child neurocognitive development.

lodine-rich foods include seafoods such as fish, shellfish, or seaweed, eggs, milk, and iodised salt. The level of iodine in cereal and grain foods varies depending on the iodine content of soil in which the food is grown. In 2009 Australia and New Zealand introduced mandatory fortification requirements for the addition of iodine (via iodised salt) to commercial bread, to address iodine deficiency in the population. High habitual intakes can arise from diets high in seaweed, high levels of iodine in drinking water or excessive salt iodisation.

Although typical Western diets are unlikely to result in iodine intakes exceeding 1mg/day, diets high in iodine-rich foods such as seaweed may lead to high habitual iodine intake.

Absorption of iodine from food is estimated at 90 - 92% under normal conditions (Thomson et al 1996, Jahreis et al 2001, Aquaron et al 2002), however it has been suggested that this absorption rate may not hold where intakes are very high (UK SACN, 2014).

Health effects of excess

Excess iodine can result in thyroid abnormalities including hypo- and hyper-thyroidism. The primary health concern associated with iodine excess is iodine-induced hyperthyroidism. Evidence suggests that there is significant variation in tolerance to high iodine intakes, with some individuals ingesting high doses with no apparent adverse effects, and some individuals experiencing thyroid disease even where intakes are within the normal range (WHO, 2007).

Sensitive groups include:

- older adults, who are more sensitive to the effects of high intakes
- individuals with a recent history of deficiency
- individuals with underlying thyroid abnormalities
- infants during pregnancy, as the developing fetus lacks the escape mechanism from the Wolff-Chaikoff effect which begins to develop around 36 weeks gestation, fully maturing during the early neonatal period.

Page 152 OFFICIAL

Identifying sufficiently sensitive biomarkers of iodine excess remains a challenge. Subclinical hypothyroidism – indicated by higher TSH (> 10 mU/L) and positive antithyroid antibodies – is a risk factor for progression to overt hypothyroidism and for cardiovascular disease (Razvi et al 2010, Delitala et al 2017, Inoue et al 2020). Elevated TSH in adults has previously been used as a marker for establishing Upper Level recommendations for iodine, in the absence of more robust biomarkers for iodine excess. Although these measures have limitations as endpoints of toxicity, they remain the most reliable biomarkers upon which to base an UL.

Criteria for measuring iodine intake and status

There are limitations in the accuracy of dietary iodine intake assessment methods, including concerns about reporting bias (including social desirability bias), variability of iodine content in foods, difficulty in measuring contribution of iodine from use of iodised salt at the table and in cooking, and the inaccuracy of food composition data. It is also difficult to ascertain individual status based on dietary intakes which reflect intakes at a specific point in time. In people with iodine replete diets, iodine is incorporated into thyroglobulin and this can provide up to 3 months of thyroid hormone, even during periods of low iodine intake.

Measures of urinary iodine concentration are used as established biomarkers for intake and status, although these measures also have limitations. As more than 90% of dietary iodine is excreted in the urine, urinary iodine is used as an indicator of recent iodine intake. Urinary iodine can be measured over 24-hours or in a spot urine sample. Given the diurnal variation in excretion of iodine in urine, the collection of 24-hour urine samples can overcome this issue. However, this measure has a high respondent burden, and there is no internationally accepted method to determine if all urine voided during the 24-hours was collected (i.e. completeness). The use of spot urine samples is simpler and consequently, more frequently reported in the literature. Furthermore, the epidemiologic criteria described below is based on UIC (ug/L). In addition to the diurnal variation mentioned, urine volume is another concern in spot urine samples; high urine volumes will lower UIC which could be misinterpreted as poor iodine status whereas low urine volumes will raise UIC, suggesting good iodine status. To address this problem, corrected measures of UIC are often reported, for example, correcting for urinary creatinine. Both 24-hour UIE and UIC are associated with inter- and intra-individual variation, thus neither should be used to assess iodine status of an individual, but rather to assess the iodine status of a group or population.

Page 153 OFFICIAL

Evidence to decision table

Adults

Criterion	OPTION 1:		OPTION 2:		
	Adapt current UL to additional age groupings		Reduce UL to reflect recent evidence suggestive of an increased risk of subclinical hypothyroidism at intakes below the current UL		
Example		UL		UL	
recommendation	Males		Males		
	18 to under 30 years	1,100 μg/day	18 to under 30 years	600 μg/day	
	30 to under 50 years	1,100 μg/day	30 to under 50 years	600 μg/day	
	50 to under 65 years	1,100 μg/day	50 to under 65 years	600 μg/day	
	65 to under 75 years	1,100 μg/day	65 to under 75 years	600 μg/day	
	75 years and older	1,100 μg/day	75 years and older	600 μg/day	
	Females		Females		
	18 to under 30 years	1,100 μg/day	18 to under 30 years	600 μg/day	
	30 to under 50 years	1,100 μg/day	30 to under 50 years	600 μg/day	
	50 to under 65 years	1,100 μg/day	50 to under 65 years	600 μg/day	
	65 to under 75 years	1,100 μg/day	65 to under 75 years	600 μg/day	
	75 years and older	1,100 μg/day	75 years and older	600 μg/day	
	Note: Individuals with thyroid disorders or a long history of iodine deficiency may still respond adversely at levels of intake below the UL.		Some individuals are particularly sensitive to the effects of iodine excess and they may respond adversely at levels of intake below the UL. Sensitive groups include people with a long history of iodine deficiency, and those with pre-existing thyroid dysfunction or disorders. Frequent consumption of seaweed – or seaweed containing products – may increase a person's risk of exceeding the UL, due to the high iodine content in some seaweed varieties.		

Health evidence profile and supporting information

The current recommendations for adults are derived from a LOAEL (lowest observed adverse effect level) of 1700 µg/day, based on two 1988 studies of supplemental iodine that found increased thyroid stimulating hormone (TSH) from baseline withlinsufficiently sensitive or reliable to inform establishment of an intakes between 1,700 and 1,800 µg/day (Paul et. Al, 1988; Gardner et. Al, 1988; (NHMRC, 2006). One study included only men, and sample sizes for both studies were small (N=32 and N=30 participants total, spread across 3 arms in each study). The intervention period was also short for both studies (14 days).

Critically, although both studies reported increases in TSH compared with baseline, levels remained within the normal reference range at the end of intervention period.

The UL was calculated by applying an uncertainty factor of 1.5 to arrive at a rounded adult UL of 1,100 μ g/day (NHMRC, 2006). 2012). The trial was performed in two phases, with the initial The relatively low uncertainty factor reflected the soft nature of phase conducted in 2004 (iodine supplement >500 µg/day) elevated TSH as an end point for toxicity, noting that it is mild and reversible in nature.

There is a lack of sensitive end points for establishing upper levels for iodine, with the relationship between iodine intake and adverse health outcomes either not well characterised, or NRV. In the absence of more robust biomarkers, elevated TSH has previously been used to derive Upper Level recommendations.

Five interventional studies were identified that explored the effect of high jodine intake on status and thyroid function measures (including elevated TSH) in healthy, euthyroid adults. However, significant heterogeneity precluded meta-analysis.

One study was selected for further analysis, as it was at low risk of bias and evaluated the effect of varying levels of supplementation (0 - 2000 µg/day) on thyroid function (Sang and the second phase (iodine supplement 0-400 µg/day) in 2008. Participants were 256 young, euthyroid Chinese adults aged 19 to 25 years who were randomised to one of twelve iodine supplementation interventions, ranging from 0-2000 μg/day for a four-week period.

Overall, the results from Sang et. Al. (2012) demonstrate significant capacity for the thyroid to adapt to high intakes of iodine - including intakes substantially exceeding current UL recommendations. However, elevated TSH and increasing rates of subclinical hypothyroidism were observed with iodine intakes of 869µg/day or greater.

The UL should aim to protect almos" all'Individuals within a population. Accordingly, 869µg/day was selected as the LOAEL, as the inflexion point at which cases of subclinical hypothyroidism became significantly increased, and the upper bound of the 95% CI for TSH was elevated beyond 5.0mU/L

Page 155 OFFICIAL

(Sang et. Al. 2012 reported a reference range of 0.3 - 5.0 mU/L for the TSH assay used).

An Uncertainty Factor of 1.5 was applied, with consideration aiven to:

Substantial inter-individual variability in tolerance for high iodine intakes, noting that selection of the LOAEL can be expected to account for some level of individual variability

The use of a LOAEL rather than a NOAEL as a reference point the mild and reversible nature of the end-point

This resulted in an estimated UL of 579.3µg/day, which was rounded up to 600µg/day.

Zealand

lodine exposure in Recent (2022-24) data from Australia suggests that the adult population in Australia is iodine sufficient - based on WHO Australia and New criteria - with almost all age groups having median UIC >100µg/L (WHO, 2013; ABS, 2025a). However, data suggests mild population deficiency in females of reproductive age (aged 25 to 44 years).

> Current dietary intake data from the 2023 National Nutrition and Physical Activity Survey (NNPAS) are presented at Table 1. Current ABS data do not report the 95% CI nor the percentage of the population exceeding the UL. Consequently, data from the 2011-13 Australian Health Survey (ABS, 2015) are also presented inclusive of this data. These data show that iodine intakes are well below the proposed UL of 600 μ g/day for at least 95% of adults across all age groups.

TABLE 6 - AUSTRALIAN NATIONAL DIETARY IODINE INTAKE DATA IN ADULTS. 2023 NNPAS (ABS. 2025B) AND 2011-13 AHS (ABS, 2015)

		2023 NNPAS (ABS, 2025b)	2011-13 AHS (ABS, 2015)		
Age groups (years) (2023 / 2011-13)	Sex	Mean intake (μg/day)	Intake (µg/day) Mean (95% CI)	% less than EAR	% exceeding UL
	Males	194	202 (120 - 299)	1.5%	0%
18 to <30y / 19 to <31y	Females	145	146 (86 - 218)	11.7%	0%
	Males	197	200 (119 - 297)	1.6%	0%
20 to <50y / 31 to <51y	Females	160	152 (91 - 226)	9.0%	0%

	Males	200	182 (106 - 274)	3.5%	0%
50 to <65y / 51-<71y	Females	158	149 (89 - 221)	10.5%	0%
	Males	191	178 (103 - 270)	4.2%	0%
65 to <75y / 71y +	Females	167	151 (91 - 224)	9.2%	0%
	Males	193	178 (103 - 270)	4.2%	0%
75 y + / 71 y +	Females	165	151 (91 - 224)	9.2%	0%

Populations with history of deficiency can be more sensitive to effects of excess. It has been suggested that this sensitivity should abate within 7-8 years following fortification (Braverman and Pearce, 2025). Mandatory fortification was introduced more than 15 years ago in Australia and New Zealand and subsequent national surveys reported sufficiency in most populations. However, those subpopulations for whom mild deficiency remains a concern (such as females aged 25-44) may be more sensitive to effects of excess.

Benchmarking against comparable international jurisdictions Upper Level recommendations vary substantially internationally. The 2006 NRVs currently recommend a UL of 1100 µg/day, in line with recommendations for the US and Canada (NHMRC, 2006; US IOM, 2001). However, these recommendations are based on evidence from 2001 and have not been recently reviewed.

EFSA established an UL of 600μg/day (EFSA, 2003), derived from the same evidence-base as the current 2006 NRVs (Paul et. Al. 1988, Gardner et. Al. 1988), but applying an Uncertainty Factor of 3, compared with the 1.5 factor applied by the US / Canada and Australia (US IOM 2001; NHMRC 2006).

More recently, the Nordic Nutrition Recommendations 2023 (Blomhoff et al. 2023) and Chinese Dietary Reference Intake reviews recommended that the UL for adults be set at 600 µg/day, with the latter deriving its recommendations from the 2012 Sang study (Guo et al 2025).

In other jurisdictions, recommendations vary from 500 µg/day in Germany and Austria (D-A-CH, 2015) to as high as 2400-3000 µg/day in Korea and Japan respectively (Guo et al 2025), although chronic high intakes in these countries mean that recommendations are not comparable to the Australian and New Zealand context.

Upper Level recommendations from comparable international jurisdictions are presented in Table 2 below.

TABLE 7 - ADULT UPPER LEVEL RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

	Proposed ANZ UL	NHMRC (2006) Current UL	EFSA (2002) UL	NNR (2023) UL	WHO (2004) UL^	D-A-C-H (2015) UL
Age (years)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(µg/day)
Adults 18 +years	600	1,100	600	600	1,875	500

^WHO Upper Limits are specified in units of μg/kg/day; the UL presented here has been derived from the UL of 30 μg/kg/day, and the adult UL calculated using the adult reference weight for comparison purposes (62.5kg NHMS 2025, ABS 2025a).

Balance of effects (benefits and harms)

Evidence suggests that the current Upper Level of 1,100 ug/day may not be protective of nearly all individuals in the population. lodine excess can disrupt normal thyroid function, particularly where there is underlying thyroid disease. This includes autoimmune thyroid disease - a common form of thyroid disease primarily affecting adult women - or nodular previous history of iodine deficiency.

Despite introduction of mandatory fortification in 2009, data suggests that mild population deficiency may persist in some sub-populations, including women of reproductive age (ABS, 2025a). Growing interest in plant-forward diets (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023) may further reduce individuals' iodine intake and exacerbate existing deficiency in the population. This deficiency increases individual sensitivity to the effects of excess iodine.

Although data from Sang et. Al. (2012) suggest that most individuals can readily adapt to high intakes of iodine, it also demonstrates increased frequency of elevated TSH and subclinical hypothyroidism with intakes above 600 μg/day. This is below the current UL of 1,100 µg/day. However, elevated TSH and subclinical hypothyroidism represent mild

The proposed recommendations are expected to be protective of public health, including most individuals who are sensitive to the effects of excess iodine intakes. Although it is not feasible to set a UL that protects all individuals within the population because some individuals may be sensitive at intakes within the normal range - the UL should aim to be protective of most thyroid disease, most common in the elderly or in people with a individuals within the population. The recommendations should include a note to identify that some individuals may still respond adversely at levels of intake below the UL.

> Intakes from the 2011-13 Australian Health Survey (ABS, 2015) suggest that for the majority (95% or more) of the adult population, intakes remain within the range of 86 to 299 ug/day. These data are supported by more recent median UIC population data, suggesting that iodine deficiency - rather than excess - is a more prevalent concern within the Australian and New Zealand adult population. It is therefore unlikely that lowering the UL will result in a material increase in the number of individuals classified as 'exceeding the UL'. Similarly, this provides a comfortable buffer between the proposed RDI of 150 µg/day, the upper range of intakes (299 µg/day) and the proposed UL of 600 µg/day.

and reversible states. The relatively short duration of the Sang et. Al. (2012) study makes it difficult to determine whether these observed effects represent a transient adaptive effect, or the onset of chronic subclinical hypothyroidism. Further evidence on the long-term effects of increased iodine on TSH and subclinical hypothyroidism are required to inform decision making.

The overwhelming public health concern In Australia and New Zealand continues to be iodine deficiency, particularly in reproductive age females.

Growing interest in seaweed consumption – and the potential for intakes to exceed the UL due to the high iodine content in some seaweed varieties – has been highlighted as a concern in other jurisdictions (EFSA, 2023). Consequently, it is proposed that any UL recommendation is accompanied by a statement to highlight that frequent – or high – consumption of seaweed or seaweed-containing products may lead to high habitual iodine intakes, increasing an individual's risk of exceeding the UL.

The overwhelming public health concern In Australia and New Zealand continues to be iodine deficiency, particularly in reproductive age females. Any changes to the UL should be carefully communicated to avoid the suggestion that individuals should minimise their iodine intake, when there is no evidence to suggest thyroid disease due to iodine excess within the general population

Certainty of the evidence

The evidence underpinning current recommendations is limited by concerns about:

risk of bias: Gardner 1988 was assessed as having some concerns using ROB-2, and Paul 1988 as having serious concerns using ROBINS-I, and the intervention period was short for both studies

imprecision: small sample sizes (N=30 or 32 participants across 3 intervention arms),

generalisability: one study included only men.

Although the association between high iodine intake and elevated TSH is well-established, the evidence for the dose-response relationship is lacking.

Risk of bias was assessed as being high or some concerns across the 5 interventional studies that examined the relationship between iodine dose and elevated TSH. Whilst the study by Sang et al (2012) was generally well-designed, the 12 intervention arms were not wholly concurrent, with the study split into two phases, four years apart (supplementation ≥500 µg/day in 2004; and <500 µg/day in 2008). The study was also limited by small sample size, with approximately 19 participants for each arm.

The outcomes upon Ih the UL Is to be established (subclinical hypothyroidism and elevated TSH) are also relatively soft end points, adding to uncertainty in the evidence.

Overall, the evidence is very uncertain about the level of iodine intake at which adverse effects may occur.

Page 159 OFFICIAL

Values. preferences and feasibility (consumers. communities)

Modelling suggests that iodine intakes will remain substantially below an UL of 600 or 1,100 μ g/day for individuals with consumption aligned with the foundation diets (NHMRC, 2011). Relevant food modelling data are shown at Table 3. TABLE 8 - FOOD MODELLING DATA (NHMRC, 2011) IN ADULTS

	Core food groups^	Foundation over	on diets - erall	Rice	e-based	Pasta	-based	Lacto-c	ovo-vego
Age group	Intake in I persons r		Intake in females		Intake in females	Intake in males	Intake in females	Intake in males	Intake in females
(years)	(μg/day) ((μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(μg/day)	(µg/day)
19-30 yr		197	210	213	204	181	187	177	173
31-50 yr	140	210	211	224	210	192	197	190	178
51-70 yr	148	219	275	229	290	198	229	198	233
70+ yr		256	260	275	289	249	223	215	218

National intake data (ABS, 2013) and population exposure data (ABS 2025a, NZMoH 2020) suggest that both the current UL of 1,100 and the proposed UL of 600 μg/day are feasible, with insufficient iodine intake more prevalent within the Australian and New Zealand population than excess intakes.

Resource impacts

Retaining the current values for adults has no material implications. Although adult age groupings are being adjusted timplications for regulators, including FSANZ (food and food align with new age groups, the adult NRVs are the same for all products) and TGA (supplements). Views will be sought age groups so there is no material impact of this change. Consequently, this minor change to age groupings should have when developing final NRVs. no implications for regulators, including FSANZ (food and food products) and TGA (supplements).

The proposed change to the UL is significant, and may have during targeted/stakeholder consultation and considered

The Australia New Zealand Food Standards Code requires the addition of iodised salt in bread. Iodised salt contains no less than 25 mg/kg (or μ g/g) of iodine and no more than 65 mg/kg of iodine.

There are a small number of foods permitted to add iodine up to a maximum of:

15 µg/200mL- legumes, cereals, nuts, seed based beverages

Page 160 **OFFICIAL**

15 μg/150g - legume-based analogues of yoghurt and dairy desserts 10 µg/25g - legume-based analogues of cheese 38 μg/600mL - formulated beverages These products are unlikely to be impacted by changes to the Upper Level Special Purpose Foods must include iodine up to a maximum 75 µg/serve - formulated meal replacements 75 µg/serve - formulated supplementary foods 75 µg/one-day quantity - formulated supplementary sports food 84 µg/MJ - food for special medical purposes represented as a sole source of nutrition Very low energy diets require a minimum 140 µg iodine per daily intake. At normal levels of consumption these products are unlikely to be impacted by changes to the Upper Level In April 2025 TGA recalled multiple vitamin and perinatal products due to lack of or excessive potassium iodine. TGA requires warning statements on preparations for internal therapeutic use with 300µg or more of iodine. CAUTION - Total iodine intake may exceed recommended level when taking this preparation WARNING - Contains iodine - do not take when pregnant except on physician's advice. Other factors The UL should aim to be protective of almost all individuals The UL should aim to be protective of almost all Individuals (health equity within the population. Maintaining the UL of 1,100 µg/day may within the population. Reducing the UL to 600 µg/day ensures impacts, expose some individuals to the health effects of iodine excess that a greater proportion of the population are protected, sustainability) notably subclinical hypothyroidism, overt hypo- or hyperincluding individuals with underlying thyroid disorders, older thyroidism, and associated chronic diseases. Some groups may adults and those with a previous history of iodine deficiency.

be at increased risk of experiencing adverse effects at lower
levels of iodine intake, including migrants (who may have an
increased risk of iodine deficiency) and women or older adults
(increased risk of underlying thyroid abnormalities). These
groups may bear an inequitable health burden associated with
maintaining the UL at current levels.

Previous iodine deficiency and underlying thyroid disease may increase a person's sensitivity to iodine excess. These risk factors may be inequitably distributed among the population, affecting vulnerable groups including migrants – who may be at increased risk of iodine deficiency (Magri et. Al. 2019) – and women or older adults in whom underlying thyroid abnormalities are more prevalent (Mammen and Cappola 2023, Miller et al 2016). It is important to ensure that the UL is established at a value that is protective of these population groups.

Decision

Option 2 was selected as it provides protection for almost all individuals within the population, whilst allowing for a diverse range of intakes above the RDI within the Australian and New Zealand population.

Despite almost halving the existing UL (1,100 µg/day), the proposed UL (600 µg/day) remains significantly higher than the RDI of 150µg/day. Population data suggests that adult intakes in Australia and New Zealand do not approach the revised UL for most (95%+) of the population, reducing the risk that non-sensitive individuals with higher intakes may be classified as 'exceeding the UL' where there may be no significant risk of harm.

Pregnancy

Criterion	Maintain current UL recommendations Adapt current UL to new age groupings	OPTION 2: Reduce UL to reflect recent evidence suggestive of an increased risk of subclinical hypothyroidism at intakes below the current UL		
Example recommendation	UL Pregnancy 1,100 μg/day	UL Pregnancy 600 μg/day		
Health evidence profile and supporting information	recommended UL in adults, based on the assumption that there	The WHO defines UIC > 500ug/L during pregnancy as an "excess intake" (WHO, 2007). However, in this context the term excess refers to intakes that are "in excess of the amount required to prevent and control iodine deficiency".		

Page 162 OFFICIAL

More recently, concerns have been raised about the effect of high maternal iodine intake on fetal development during pregnancy. The developing fetus is particularly vulnerable to excess iodine, as the Wolff-Chaikoff escape mechanism does not begin to develop until around 36 weeks gestation, fully maturing during the early neonatal period.

2'.

Consequently, the 500 µg/L threshold should not be interpreted as describing a UL.

There remains a dearth of good quality data on the effects of high intakes of iodine on maternal and child outcomes during pregnancy. Nevertheless, concerns have been raised about the effect of high iodine intakes during pregnancy and adverse Relevant data and considerations are summarised under 'Optioneffects on the foetus, due to the inability to escape from the Wolff-Chaikoff effect, which begins to develop around 36 weeks gestation, fully maturing during the early neonatal period.

> Data from cross-sectional studies suggest that intakes >500 ug/day during pregnancy may be associated with maternal thyroid dysfunction (Wu et al 2023; Shi et al 2015; Guo et al 2025). However, the evidence is not compelling, with a 2018 systematic review reporting inconsistent findings across studies (Katagiri 2018). Concerns about imprecise estimation of intake based on urinary iodine during pregnancy and limited generalisability to the Australian and New Zealand nutritional context further limit certainty in the evidence.

> In the absence of robust evidence for the effects of excess. iodine intake during pregnancy, it is proposed that the adult UL of $600 \mu g/day$ be adopted.

The overwhelming public health concern in Australia and New Zealand continues to be iodine deficiency during pregnancy. Any changes to the UL during pregnancy should be carefully communicated to ensure that the need for supplementation during pregnancy continues to be a core message.

Zealand

lodine exposure in In Australia, the 2011-12 NHMS (ABS, 2013) reported median UIC for pregnant and breastfeeding women aged 16-44 years of 116 Australia and New μg/L and 103 μg/L respectively. These values were lower than the median UIC for all Australian women of that age reported in the 2011-12 NHMS (121 μ g/L) and are indicative of insufficient intakes during pregnancy under WHO criteria (WHO, 2013).

> Although 2022-24 NHMS data is not available for pregnant cohorts, median UIC in non-pregnant, reproductive-age females (16 to 44 years) was 101µg/L indicating borderline sufficiency (ABS, 2025a). However, females aged 25 to 34 years and 35 to 44

years are mildly deficient, with median UIC of 87μg/L and 97μg/L respectively, and more than 20% of individuals with UIC <50 in both age groups.

These findings are echoed in data from the 2014/15 NZHS which - while based on a small cohort of pregnant women (N=110) - reported median UIC of 114µg/L (95% CI: 87, 141µg/L), below the WHO-recommended median UIC of 150µg/L (NZ MoH, 2020; WHO, 2013).

Although intake data are unavailable for pregnant women, the 2011-13 Australian Health Survey (ABS, 2015) found that 95% of females aged 19-50 yrs have intakes well below the proposed UL of 600 µg/day, as shown in Table 4. Recently released dietary intake data from the 2023 NNPAS (ABS, 2025b) suggests similar intakes in reproductive age females, although 95% confidence intervals and the percentage exceeding the UL were not reported.

TABLE 9 - INTAKE IN REPRODUCTIVE-AGE FEMALES (19-50 YEARS), 2023 NNPAS (ABS, 2025B) AND AHS 2011-13 (ABS, 2015)

Age groups (years)	2023 NNPAS (ABS, 2025b)	2011-13 AHS (ABS, 2015)			
2023 / 2011-13	Mean intake (μg/day)	Intake (µg/day) Mean (95% CI)	% less than EAR	% exceeding UL	
18 to <30y / 19 to <31 y	145	146 (86 - 218)	11.7%	0%	
30 to <50y / 31 to <51 y	160	152 (91 - 226)	9.0%	0%	

Benchmarking against comparable international jurisdictions In most jurisdictions, the recommendations for adults have been adopted - unaltered - for pregnant women. However, in Japan - where the UL is 3,000 µg/day - the UL during pregnancy is established at 2,000 µg/day to account for increased sensitivity. More recent recommendations from China (2023) established the UL at 500 µg/day - slightly below the value of 600µg/day adopted for adults, and based on the abovementioned cross-sectional studies conducted in China.

A 2022 UK report on the effects of excess iodine intake on maternal and child health found there was insufficient evidence to inform a risk assessment, noting that current intakes were of limited concern except in individuals with diets high in seaweed (UK FSA COT, 2022).

Relevant recommendations from comparable international jurisdictions are shown in Table 5.

TABLE 10 - PREGNANCY UPPER LEVEL RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

	Proposed ANZ UL	Current ANZ UL (2006)	US / Canada UL (2001)	EFSA UL (2002)	UK SCF UL (2000)	NNR UL (2023)
Age (years)	UL (μg/day)	(2006) (µg/day)	(2001) (µg/day)	(2002) (µg/day)	(2000) (µg/day)	(2023) (µg/day)
Pregnancy (all)	600	1,100	1,100	600	600	600

Balance of effects (benefits and harms)

Evidence suggests that the current Upper Level of 1,100 µg/day may not be protective of maternal and child health during pregnancy.

Current national data suggest that Australian and New Zealand females of reproductive age are mildly deficient. Growing interest in plant-forward diets (Roy Morgan 2016; Kantar 2022; Riverola et al. 2023) may further reduce individuals' iodine intake and exacerbate existing deficiency in the population. This deficiency increases individual sensitivity to the effects of excess iodine.

Although there is insufficient, high quality exposure data to support a risk assessment of excess iodine during pregnancy, evidence suggests that adverse effects on maternal thyroid function may occur below the current UL.

However, there is no evidence that adverse maternal or child health outcomes from excess iodine are prevalent within the Australian and New Zealand population. The overwhelming public health concern remains the effect of mild population deficiency during pregnancy on birth outcomes and child neurodevelopment.

Although very limited data suggests that adverse effects can occur with intakes >500µg/day, the evidence is not compelling, and may not be generalisable to the Australian context. If the UL for pregnant women were reduced to 500µg/day, this would create a discrepancy between the values for adults and during pregnancy, and may result in a misperception that high iodine intake during pregnancy is an issue of public health concern in Australia and New Zealand.

However, the overwhelming public health concern in this context remains iodine deficiency during pregnancy. In contrast, reducing both the adult and pregnancy UL to 600 µg/day will be protective of the general population - including both mother and the developing infant during pregnancy - without undermining existing public health efforts to address persistent mild population deficiency within females of reproductive age.

Certainty of the evidence

The evidence on the levels of iodine intake at which adverse effects may occur during pregnancy is very uncertain.

Values, preferences and feasibility (consumers, communities)	Food modelling data suggests that both the current UL of 1,100 μ g/day and the proposed UL of 600 μ g/day are feasible to achieve, with intake from foundation diets estimated at between 233 and 261 μ g/day (NHMRC, 2011). It is also suggested that pregnant women take supplemental iodine of 150 μ g/day (NHMRC 2010). As a result, intakes during pregnancy in those following the foundation diets may increase to around 380 - 410 μ g/day. Although intake data are unavailable for pregnant women, data from the 2011-13 Australian Health Survey (ABS, 2015) indicate that 95% of females aged 19-50 yrs have intakes between ~86 and 226 μ g/day, which is also well below the lower proposed UL of 600 μ g/day. Most recent population median UIC data in pregnant women is indicative of mild population deficiency in both Australia and New Zealand. The proposed UL is also substantially higher than the proposed RDI of 220 μ g/day, providing for sufficient variability in individual intakes within the range of normal. This provides another rationale for not adopting a lower UL of 500 μ g/day in this population, which may excessively narrow the window of acceptable intakes between the RDI (220 μ g/day) and UL.					
Resource impacts	Retaining the current values for pregnancy is expected to have no regulatory implications or resource impacts.	The proposed change to the UL is significant, and may have implications for regulators, including FSANZ (food and food products) and TGA (supplements). Views will be sought during targeted / stakeholder consultation and considered when developing final NRVs.				
Other factors (health equity impacts, sustainability)	within the population. Maintaining the UL of 1,100 µg/day may expose some individuals to the health effects of iodin excess - notably subclinical hypothyroidism, overt hypothyper- thyroidism, and associated chronic diseases. Some groups may be at increased risk of experiencing adverse effects at lower levels of iodine intake, including migrants (who may have an increased risk of iodine deficiency) and	Previous iodine deficiency and underlying thyroid disease may increase a person's sensitivity to jodine excess. These risk factors				

Page 166 OFFICIAL

Decision

Option 2 was selected as it provides protection for almost all individuals within the population including the developing fetus, whilst allowing for a diverse range of intakes above the RDI within the Australian and New Zealand population.

Despite almost halving the existing UL (1,100 µg/day), the proposed UL (600 µg/day) remains significantly higher than the RDI of 220 µg/day. Population data suggests that adult intakes in Australia and New Zealand do not approach the revised UL for most (95%+) of the population, reducing the risk that non-sensitive individuals with higher intakes may be classified as 'exceeding the UL' where there may be no significant risk of harm.

Mild iodine deficiency remains the overwhelming public health concern in lactating populations in Australia and New Zealand. Care must be taken to ensure that communication about the UL emphasises concerns about deficiency and reinforces public health messaging about the need for supplementation during pregnancy and throughout pregnancy.

Lactation

Criterion	OPTION 1:	OPTION 2:
	Maintain current UL recommendations Adapt current UL to new age groupings	Reduce UL to reflect recent evidence suggestive of an increased risk of subclinical hypothyroidism at intakes below the current UL
Example	UL	UL
recommendation	Lactation 1,100 μg/day	Lactation 600 μg/day
Health evidence profile and supporting information	Current recommendations for during lactation are base on the recommended UL in adults. This reflects the assumption that there was no evidence of increased sensitivity in these populations. More recently, concerns have been raised about the effort of high maternal iodine intake on fetal development for pre-term neonates. The developing fetus is particularly vulnerable to excess iodine, as the Wolff-Chaikoff escap mechanism which begins to develop around 36 weeks gestation, fully maturing during the early neonatal period However, data in this cohort are lacking. In the absence of data, the UL for lactating women show be set based upon the recommendation for during pregnancy.	iodine intake on fetal development for pre-term neonates. The developing fetus is particularly vulnerable to excess iodine, as the Wolff-Chaikoff escape mechanism which begins to develop around 36 weeks gestation, fully maturing during the early neonatal period. However, data in this cohort are lacking. In the absence of data, the UL for lactating women should be set based upon the recommendation for during pregnancy. The overwhelming public health concern in Australia and New Zealand continues to be iodine deficiency during pregnancy (and lactation). Any changes to the UL during lactation should be
lodine exposure in Australia and New Zealand	groups are highlighted below for completeness. In Australia, the 2011-12 NHMS reported median UIC for and 103 µg/L respectively (ABS, 2013). These values we reported in the 2011-12 NHMS (121 µg/L) and are indicat (WHO, 2013). Although more recent data from the 2022-24 NHMS is a	ew Zealand are limited. However, relevant data from comparable pregnant and breastfeeding women aged 16-44 years of 116 μg/L are lower than the median UIC for all Australian women of that age we of insufficient intakes during pregnancy under WHO criteria not available for breastfeeding women, median UIC in non-pregnant porderline sufficiency (101 μg/L; ABS, 2025a). However, data

suggests mild population deficiency in females aged 25 to 34 years and 35 to 44 years, with median UIC of 87 μ g/L and 97 μg/L respectively, and more than 20% of individuals with UIC <50 μg/L in both age groups.

These findings are echoed in data from the 2014/15 NZHS which - while based on a small cohort of pregnant women (N=110) - reported median UIC of 114 μ g/L (95% CI: 87, 141 μ g/L), below the WHO-recommended median UIC of 150 μ g/L (NZ MoH, 2020; WHO, 2013).

Although intake data are unavailable for pregnant women, the 2011-13 Australian Health Survey (ABS, 2015) found that 95% of females aged 19-50 yrs have intakes well below the proposed UL of 600 $\mu g/day$, as shown in Table 6. Recently released dietary intake data from the 2023 NNPAS (ABS, 2025b) suggests similar intakes in reproductive age females, although 95%confidence intervals and the percentage exceeding the UL were not reported.

TABLE 11 - INTAKE IN REPRODUCTIVE-AGE FEMALES (19-50 YEARS), 2023 NNPAS (ABS, 2025B) AND AHS 2011-13 (ABS, 2015)

	2023 NNPAS (ABS, 2025b)	2011-13 AHS (ABS, 2015)			
Age groups (years) 2023 / 2011-13	Mean intake (μg/day)	Intake (µg/day) Mean (95% CI)	% less than EAR	% exceeding UL	
18 to <30y / 19 to <31 y	145	146 (86 - 218)	11.7%	0%	
30 to <50y / 31 to <51 y	160	152 (91 - 226)	9.0%	0%	

comparable international iurisdictions

Benchmarking against In most jurisdictions, the recommendations for adults and pregnancy have been adopted - unaltered - for lactating females. However, in Japan - where the UL is 3,000 μ g/day - the UL during lactation is established at 2,000 μ g/day to account for increased sensitivity in this population. More recent recommendations from China (2023) established the UL at 500 μg/day in line with recommendations during pregnancy.

> A 2022 UK report on the effects of excess iodine intake on maternal and child health found there was insufficient evidence to inform a risk assessment, noting that current intakes were of limited concern except in individuals with diets high in seaweed (UK FSA COT, 2022).

Relevant recommendations from comparable international jurisdictions are shown in Table 7.

	TABLE 12 - UPPER LEVEL RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS					
	Age (years)	Proposed ANZ UL (μg/day)	Current ANZ UL (2006) (µg/day)	US/Canada UL (2001) (µg/day)	EFSA UL (2002) (μg/day)	NNR UL (2023) (μg/day)
	Pregnancy (all)	600	1,100	1,100	600	600
Balance of effects (benefits and harms)	There is insufficient evidence from lactating cohorts to support a risk assessment. However, evidence suggests that the					
Certainty of the evidence	The evidence on the levels of iodine intake at which adverse effects may occur during lactation is very uncertain.					
Values, preferences and feasibility (consumers, communities)	Foundation diet modelling (NHMRC, 2011) estimates dietary iodine intake in lactating women at between 251 and 253 μ g/day - below the proposed RDII of 270 μ g/day, suggesting that the recommendations may not be fully achievable from diet alone. However, it is currently recommended that all Australian and New Zealand women who are lactating take a daily iodine supplement containing 150 μ g of iodine (NHMRC, 2010). Consequently, intakes could increase to around 400 μ g/day in those following the foundation diet who also follow the recommendations for supplementation.					
	indicate that 95% proposed UL of 6	of females aged 19- 00 µg/day, even fac	50 yrs have intakes	between ~86 and 2 iodine from supple	26 µg/day, which is ments. Most recent	th Survey (ABS, 2015) also well below the lo population median UIC ealand.

	The proposed UL is also substantially higher than the proposed RDI, providing for sufficient variability in individual intakes within the range between the RDI (270 μg/day), estimated intakes from dietary modelling and supplementation (400 μg/day) and the proposed UL (600 μg/day).						
Resource impacts	Retaining the current values for lactation is expected to have no regulatory implications or resource impacts.	The proposed change to the UL is significant, and may have implications for regulators, including FSANZ (food and food products) and TGA (supplements). Views will be sought during targeted / stakeholder consultation and considered when developing final NRVs.					
Other factors (health equity impacts, sustainability)	within the population. Maintaining the UL of 1,100 µg/day may expose some individuals to the health effects of iodin excess - notably subclinical hypothyroidism, overt hypothyper- thyroidism, and associated chronic diseases. Some groups may be at increased risk of experiencing adverse effects at lower levels of iodine intake, including migrants (who may have an increased risk of iodine deficiency) and	Is The UL should aim to be protective of almost all individuals within the population. Reducing the UL to 600 µg/day ensures with a greater proportion of the population are protected, princluding individuals with underlying thyroid disorders, older adults and those with a previous history of iodine deficiency. Previous iodine deficiency and underlying thyroid disease may increase a person's sensitivity to iodine excess. These risk factors may be inequitably distributed among the population, affecting vulnerable groups including migrants - who may be at increased risk of iodine deficiency (Magri et. al. 2019) - and women in whom underlying thyroid abnormalities are more prevalent (Mammen and Cappola 2023, Miller et al 2016). It is important to ensure that the UL is established at a value that is protective of these population groups.					
Decision	population. Despite almost halving the existing UL (1,100 µg/day), t than the RDI of 270µg/day. Population data suggests the	intakes above the RDI within the Australian and New Zealand he proposed UL (600 µg/day) remains significantly higher hat adult intakes in Australia and New Zealand do not tion, reducing the risk that non-sensitive individuals with					

Page 171 OFFICIAL

Mild iodine deficiency remains the overwhelming public health concern in lactating populations in Australia and New Zealand. Care must be taken to ensure that communication about the UL emphasises concerns about deficiency and reinforces public health messaging about the need for supplementation during throughout lactation.

Page 172 OFFICIAL

Children and adolescents

Criterion	OPTION 1:		OPTION 2:			
	Maintain current UL recommendations Adapt current UL to additional new age groupings		Reduce UL to reflect recent evidence suggestive of an increased risk of subclinical hypothyroidism at intakes below the current UL			
Example	NRV age groupings:	UL	NRV age groupings:	UL		
recommendation		(µg/day)		(µg/day)		
	All (males & females)		All (males & females)			
	1 to under 4 years	200	1 to under 4 years	200		
	4 to under 9 years	300	4 to under 9 years	300		
	9 to under 14 years	600	9 to under 14 years	450		
	14 to under 18 years	900	14 to under 18 years	550		
	Age groupings by school-age:		Age groupings by school-age:			
	All (males & females)	UL	All (males & females)	UL		
		(μg/day)	((µg/day)		
	12 to under 24 months	200	12 to under 24 months	200		
	2 to under 5 years	250	2 to under 5 years	250		
	5 to under 12 years	450	5 to under 12 years	350		
	12 to under 18 years	800	12 to under 18 years	500		
Health evidence profile and supporting information	extrapolated from the adult UL, based on metabolic body weight.		In the absence of evidence in children and adolescents, en recommendations can be extrapolated from the adult UL, based or metabolic body weight using the following formula: ULchild = ULadult x (Weightchild/Weight adult) ^{0.75}			
	There remains insufficient evidence to inform derivation of ULs for children and adolescents.			Reference weights used were based on 2022 ideal weight data from the Australian Bureau of Statistics, as per the current NRVs Methodological Framework (NHMRC, 2025). Calculated values were rounded up to the nearest 50 (children aged <12 years) or rounded the nearest 100 (children aged >12 years) to arrive at final values.		

Inputs for extrapolation and the raw calculated UL value are shown at Table 8, and rounding of calculated UL to proposed UL is shown at Table 9.

TABLE 13 - INPUTS FOR EXTRAPOLATION OF ADULT UL TO CHILDREN

Age group	UL_{adult}	Weight _{child}	Weight _{adult}	UL_{child}		
	(µg/day)	(kg)	(kg)	(μg/day)		
NRVs age grou	ıpings:					
1 to <4y		13		183.9		
4 to <9y	600	22.4	62.9	276.6		
9 to <14y	600	40.7	62.9	432.9		
14 to <18y		57.6		561.7		
Age (grouped	by school-ag	e):				
12 to <24 mo		10.6		157.8		
2 to <5 yr	600	15.9	62.9	213.9		
5 to <12 yr	000	28.6	02.9	332.2		
12 to <18 yr		54.5		538.8		
TABLE 14 - ROUNDING FOR EXTRAPOLATED CHILD AND ADOLESCENT ULS						
Age group	Calculated UL _{child} (µg/day)	l Rounding (μg/day)	Proposed UL _{child} (µg/day)			
NRVs age grou	ıpings:					

Page 174 OFFICIAL

1 to <4 yr	183.9	16.1	200	
4 to <9 yr	276.6	23.4	300	
9 to <14 yr	432.9	17.1	450	
14 to <18 yr	561.7	-11.7	550	
Age (grouped by	Age (grouped by school-age):			
12 to <24 mo	157.8	42.2	200	
2 to <5 yr	213.9	36.1	250	
5 to <12 yr	332.2	17.8	350	
12 to <18 yr	538.8	-38.8	500	

lodine exposure in Australia and New Zealand The 2022-24 NHMS reported that children aged 5 to under 18 were iodine-sufficient, with a median UIC of 171 μg/L and only 8% with UIC <50 μg/L (ABS, 2025a). Urinary iodine measures were highest in children aged 5 to under 12 years (median UIC 185μg/L for males; 188μg/L for females).

Current dietary intake data from the 2023 National Nutrition and Physical Activity Survey (NNPAS) are presented at Table 10. Current ABS data do not report the 95% confidence interval nor the percentage of the population exceeding the UL. Consequently, data from the 2011-13 Australian Health Survey (ABS, 2015) are also presented inclusive of this data. These data show that iodine intakes are well below the proposed ULs for at least 95% of the population across all age groups, except for young children.

Data from the 2011-13 Australian Health Survey (ABS, 2015) suggested that 12.9% of males and 5.6% of females aged 2-3 years had intakes exceeding the UL. However, these intakes are unlikely to have adverse health effects, in view of the safety margins used to derive an UL and given the reversible nature of the clinical end point on which ULs are based (sub-clinical hypothyroidism). Furthermore, the period of excessive intake is expected to be transient, with less than 1% of children expected to exceed the UL at the age of 4 years (FSANZ 2016).

TABLE 15 - INTAKE IN CHILDREN AND ADOLESCENTS (2 - 18 YEARS), AUSTRALIAN HEALTH SURVEY 2011-13 (ABS, 2015)

2023 NNPAS (ABS, 2025b)			2011-13 AHS (ABS, 2015)				
Age groups (years) 2023 / 2011-13)	Intake Males. (µg/day)	Intake Females (µg/day)	Intake in Males (µg/day) Mean (95% CI)	% exceeding UL	Intake in Females (µg/day) Mean (95% CI)	% exceeding UL	
2 to <5 y / 2 to <4 y	152	143	157 (100 - 222)	12.9%	141 (88 - 202)	5.6%	
5 to <12 y / 4 to <9 yr	176	165	164 (106 - 231)	0.1%	148 (93 - 210)	0%	
12 to <18 y / 9 to <14 yr	220	161	190 (111 - 285)	0%	169 (102 - 247)	0%	
12 to <18 y / 14 to <19 yr	220	161	205 (123 - 303)	0%	153 (91 - 229)	0%	

In New Zealand, available population data have not captured intake or median UIC for children aged under 15 years. However, studies suggest that children aged 8-10 years are iodine sufficient (Skeaff & Lonsdale-Cooper, 2013; Jones et al 2016), although a more recent, smaller study in children aged 9-11 years estimated intake to be 74µg/day; below the RDI (120µg/day) in this age group (Peniamina et al 2019).

comparable international

iurisdictions

Benchmarking against Table 11 shows NRV recommendations for comparable international jurisdictions. Values have been adjusted using a weighted average calculation, to align with the proposed age groupings (denoted by * in the table).

TABLE 16 - CHILD AND ADOLESCENT UPPER LEVEL RECOMMENDATIONS ACROSS COMPARABLE JURISDICTIONS

Age (years) NRVs age groupings:	Proposed UL (μg/day)	Current ANZ UL (2006)* (µg/day)	USA/Canada UL (2001)* (µg/day)	EFSA UL (2014)* (μg/day)	NNR UL (2023)* (μg/day)
1 to under 4 years	200	200	200	200	-
4 to under 9 years	300	300	300	280*	-
9 to under 14 years	450	600	600	390*	-
14 to under 18 years	550	900	900	488*	600^

	Age (grouped by school-age):							
	12 to under 24 months:	200	200	200	200	-		
	2 to under 5 years:	250	233*	233*	217*	-		
	5 to under 12 years:	350	429*	429*	307*	-		
	12 to under 18 years:	500	800*	800*	475*	600^		
	^NNR (2023) specifies a Ul	_ for 14 - 18 year o	olds during lactation	n or pregnancy only				
Balance of effects (benefits and harms)	evidence suggests that the reasonable to assume that	There is insufficient evidence from children and adolescents to support a risk assessment and derive a UL. However, evidence suggests that the current UL of 1,100 µg/day may not be protective of all adults within the population. It is reasonable to assume that extrapolation of revised adult values - based on metabolic body weight - will ensure that the UL for children and adolescents will be protective for most individuals in the general population.						
Certainty of the evidence	The evidence on the levels of iodine intake at which adverse effects may occur in children and adolescents is very uncertain.							
Values, preferences and feasibility (consumers, communities)	Data from the food modelling system (NHMRC, 2011) suggests that child or adolescent intakes from each of the foundation diets exceed the proposed RDI, but do not approach the ULs for each age group. Intake data from the 2011-13 Australian Health Survey (ABS, 2015) also suggest that the proposed UL is feasible, with intakes for at least 95% of males and females across all age groups less than the proposed ULs. Finally, the proposed UL is substantially higher than the proposed RDI across all age groups, allowing for sufficient variability in individual intakes within the range between the RDII and the proposed UL. Food modelling data from the overall foundation diets are shown at Table 12 alongside the proposed AI, UL and 2011-13 AHS intake data for comparison purposes.							


TABLE 17 - COMPARISON OF PROPOSED NRVS WITH FOOD MODELLING DATA (NHMRC, 2011) AND INTAKE DATA (ABS, 2015) Proposed Proposed Proposed UL 2011-13 AHS Intake data **Proposed** Foundation diets -RDI - NRVs RDI - School UL - NRVs - School-age overall ages age age groups groupings Males Female: groupings (µg/day) (µg/day) (µg/day) Mean Mean (µg/day) (95% CI) (95% CI **Female** Age Male intake intake intake intake group (μg/day) (μg/day) (µg/day) (µg/day (years) 12 to <24mo 200 95 90 90 200 96 2 to <4vr 90 90 250 200 117 119 157 (100-222) 141 (88-2 4 to <9yr 110# 120 350# 300 143 133 164 (106-231) 148 (93-2 9 to <11vr 173 110 120 350 450 189 190 (111-285) 169 (102-2 12 to <13yr 140 150 500 450 235 221 14 to <18yr 140 150 500 600 209 212 205 (123-303) 153 (91-2) $^{\#}$ Age groupings for UL do not fully align with food modelling ages. For 4 year olds the proposed RDI is 90 μ g/day and UL is 250 μg/day. Resource impacts Retaining the current values for children and The proposed change to the UL is significant, and may have adolescents is expected to have no regulatory implications for regulators, including FSANZ (food and food implications or resource impacts. products) and TGA (supplements). Views will be sought during targeted/stakeholder consultation and considered when developing final NRVs. Formulated supplementary foods for young children must contain iodine up to a maximum of 70µg/serve. Other factors (health No specific factors in addition to those outlined fonce specific factors in addition to those outlined for adults and equity impacts, adults and pregnancy/lactation above. pregnancy/lactation above. sustainability)

Page 178 OFFICIAL

Decision

Option 2 was selected as it provides protection for almost all individuals within the population, whilst allowing for a diverse range of intakes above the RDI within the Australian and New Zealand population.

UL values for young children (<8 years for NRVs age groupings; <5 years for school age groupings) are unchanged from current recommendations. For remaining age groups, the proposed UL does narrow the window between the RDI and UL slightly, although based on available population data the majority (95%+) of the population are unlikely to have intakes approaching the revised UL. This reduces the risk that non-sensitive individuals with higher intakes may be classified as 'exceeding the UL' where there may be no significant risk of harm.

References

Aquaron R, Delange F, Marchal P, Lognone V and Ninane L, 2002. Bioavailability of seaweed iodine in human beings. Cellular and Molecular Biology, 48, 563-569.

Australian Bureau of Statistics (ABS) 2013. *Iodine* [Internet]. Data source: 2011-12 National Health Measures Survey. Canberra: December 11 [accessed 22 July 2024]. Available from: https://www.abs.gov.au/articles/iodine.

Australian Bureau of Statistics (ABS). 2015. 2011-13 Australian Health Survey: Usual Nutrient Intakes. Released 06/03/2015. Available from: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/usual-nutrient-intakes/latest-release [Accessed 2 June 2025]

Australian Bureau of Statistics (ABS). 2025a. 2022-24 National Health Measures Survey: Nutrient biomarkers. Released 31/03/2025. Available from https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-measures-survey/latest-release#nutrient-biomarkers

Australian Bureau of Statistics (ABS). 2025b. 2023 National Nutrition and Physical Activity Survey (NNPAS). Released 05/09/2025. Available from: https://www.abs.gov.au/statistics/health/food-and-nutrition/food-and-nutrients/2023#selected-micronutrients-and-caffeine [Accessed 15 September 2025]

Blomhoff R, Andersen R, Arnesen, E et al. 2023. Nordic Nutrition Recommendations 2023. Nordic Council of Ministers, Copenhagen. Available from https://pub.norden.org/nord2023-003/nord2023-003/nord2023-003.pdf. [Accessed 5 December 2024]

Braverman KD and Pearce EN. 2025. Iodine and Hyperthyroidism: A Double-Edged Sword, *Endocrine Practice*, 31 (3): 390-395

D-A-CH (2015). German Nutrition Society, Austrian Nutrition Society, Swiss Nutrition Society (eds.). Dietary Reference Values. 2nd version of the 1st edition 2015, Neuer Umschau Buchverlag.

Delitala AP, Fanciulli G, Maioli M, Delitala G. 2017. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. *Eur J Intern Med.* 38:17-24

European Food Safety Authority (EFSA) Scientific Committee on Food, 2003. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Iodine. In: Tolerable Upper Intake Levels for Vitamins and Mineral. 135-150 pp. Available online: https://www.efsa.europa.eu/sites/default/files/efsa rep/blobserver assets/ndatolerable uil.pdf Accessed 5 December 2024.

European Food Safety Authority (EFSA), Dujardin B, Ferreira de Sousa, R, Gómez Ruiz JA, 2023. Scientific Report on the dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. *EFSA Journal* 2023; 21(1):7798, 47 pp. https://doi.org/10.2903/j.efsa.2023.7798

Food Standards Australia New Zealand (FSANZ), 2016. Monitoring the Australian population's intake of dietary iodine before and after mandatory fortification. Available from:

https://www.foodstandards.gov.au/sites/default/files/publications/Documents/lodine%20Fortification%20Monitoring%20Report.pdf (accessed 30 July 2024)

Gardner DF, Centor RM, Utiger RD. 1988. Effects of low dose oral iodide supplementation on thyroid function in normal men. *Clin Endocrinol (Oxf)*. 28(3):283-8.

Guo W, Chen W, Zhang W. 2025. Global Perspectives on China's Iodine Dietary Reference Intakes: Revisions, Public Health Implications and Future Strategies. *The Journal of Nutrition*, Pre-print.

Inoue K, Ritz B, Brent GA, Ebrahimi R, Rhee CM, Leung AM. 2020. Association of Subclinical Hypothyroidism and Cardiovascular Disease With Mortality. *JAMA Netw Open*. 3(2):e1920745

Jahreis G, Hausmann W, Kiessling G, Franke K and Leiterer M, 2001. Bioavailability of iodine from normal diets rich in dairy products-results of balance studies in women. Experimental and Clinical Endocrinology and Diabetes, 109, 163-167.

Kantar (2022) Better Futures 2022; available at https://www.sbc.org.nz/wp-content/uploads/2022/07/2022-Better-Futures-Report-Version-23-March-FINAL.pdf (accessed 1 July 2025).

Katagiri R, Yuan X, Kobayashi S, Sasaki S. Effect of excess iodine intake on thyroid diseases in different populations: A systematic review and meta-analyses including observational studies. PLoS One. 2017 Mar 10;12(3):e0173722

Mammen JSR and Cappola AR. 2021 Autoimmune Thyroid Disease in Women. *JAMA*. 325(23):2392-2393. doi: 10.1001/jama.2020.22196. PMID: 33938930; PMCID: PMC10071442

Magri F, Zerbini F, Gaiti M, Capelli V, Croce L, Bini S, Rigamonti AE, Fiorini G, Cella SG, Chiovato L. Poverty and immigration as a barrier to iodine intake and maternal adherence to iodine supplementation. J Endocrinol Invest. 2019 Apr;42(4):435-442

Miller, J. C., MacDonell, S. O., Gray, A. R., Reid, M. R., Barr, D. J., Thomson, C. D., & Houghton, L. A. (2016). Iodine Status of New Zealand Elderly Residents in Long-Term Residential Care. *Nutrients*, 8(8), 445. https://doi.org/10.3390/nu8080445

National Health and Medical Research Council. 2006. Nutrient Reference Values for Australia and New Zealand. Available from: https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes

National Health and Medical Research Council (NHMRC), 2010. Public Statement: Iodine supplementation for Pregnant and Breastfeeding Women, available from: https://www.nhmrc.gov.au/about-us/publications/iodine-supplementation-pregnant-and-breastfeeding-women [Accessed: 30 July 2024]

National Health and Medical Research Council. 2011 [Report prepared by Byron A, Baghurst K, Cobiac L, Baghurst P, Magarey A on behalf of Dietitians Association of Australia]. 2008. A modelling system to inform the revision of the Australian Guide to Healthy Eating. Available from:

Page 181 OFFICIAL

https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55c_dietary_guidelines_food_modelling.pdf [Accessed 2 June 2025]

New Zealand Ministry of Health (NZ MoH), 2020. Biomedical Data Explorer 2014/15: New Zealand Health Survey - Iodine data files, available from: minhealthnz.shinyapps.io/nz-health-survey-2014-15-biomedical/ (accessed 30 July 2024)

Paul T, Meyers B, Witorsch RJ, Pino S, Chipkin S, Ingbar SH, Braverman LE. 1988. The effect of small increases in dietary iodine on thyroid function in euthyroid subjects. *Metabolism*. 37(2):121-4

Peniamina R, Skeaff S, Haszard JJ, McLean R. Comparison of 24-h Diet Records, 24-h Urine, and Duplicate Diets for Estimating Dietary Intakes of Potassium, Sodium, and Iodine in Children. *Nutrients*. 2019; 11(12):2927. https://doi.org/10.3390/nu11122927.

Razvi S, Weaver JU, Vanderpump MP, Pearce SH. 2010. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. *J Clin Endocrinol Metab*, 95(4):1734-40

Riverola C, Harrington S, Ruby M, Dedehayir O, Morris R, Laurence C. 2023. Consumer views on plant-based foods: Australian sample. Griffith Research Repository, available from: https://research-repository.griffith.edu.au/server/api/core/bitstreams/f238a2f5-7201-4af0-8159-09eb991fa604/content (accessed 1 July 2025)

Roy Morgan Research (2016) Vegetarianism on the Rise in New Zealand [press release]; available at https://www.roymorgan.com/findings/vegetarianism-on-the-rise-in-new-zealand (accessed 1 July 2025).

Sang Z, Wang PP, Yao Z, Shen J, Halfyard B, Tan L, Zhao N, Wu Y, Gao S, Tan J, Liu J, Chen Z, Zhang W. 2012. Exploration of the safe upper level of iodine intake in euthyroid Chinese adults: a randomized double-blind trial. Am J Clin Nutr. 95(2):367-73.

Shi X, Han C, Li C, Mao J, Wang W, Xie X, Li C, Xu B, Meng T, Du J, Zhang S, et. al. 2015. Optimal and Safe Upper Limits of Iodine Intake for Early Pregnancy in Iodine-Sufficient Regions: A Cross-Sectional Study of 7190 Pregnant Women in China, *The Journal of Clinical Endocrinology & Metabolism*, 100 (4): 1630-1638.

Skeaff SA, Lonsdale-Cooper E. Mandatory fortification of bread with iodised salt modestly improves iodine status in schoolchildren. Br J Nutr. 2013 Mar 28;109(6):1109-13. doi: 10.1017/S0007114512003236. Epub 2012 Jul 31. PMID: 22849786

Thomson CD, Smith TE, Butler KA, Packer MA. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med Biol. 1996 Dec;10(4):214-22. doi: 10.1016/S0946-672X(96)80038-1. PMID: 9021672.)

United Kingdom Food Standards Agency Committee on Toxicity (UK FSA COT). 2022. Statement on the potential effects that excess iodine intake may have during preconception, pregnancy and lactation. Available online:

https://cot.food.gov.uk/Statement%20on%20the%20potential%20effects%20that%20excess%20iodine%20intake%20may%20have%20during%20preconception,%20pregnancy%20and%20lactation [Accessed 8 July 2025].

Page 182 OFFICIAL

United Kingdom Scientific Advisory Committee on Nutrition (UK SACN), 2014. SACN Statement on Iodine and Health. https://assets.publishing.service.gov.uk/media/5a7e469ced915d74e62253f3/SACN_lodine_and_Health_2014.pdf [Accessed 22 July 2024].

US IOM (Institute of Medicine), 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington DC, USA, 797 pp.

World Health Organization (WHO) and Food and Agriculture Organization (FAO) of the United Nations (UN), 2004. Vitamin and mineral requirements in human nutrition. Second edition. Joint FAO/WHO Expert Consultation Report. Geneva: World Health Organisation.

World Health Organization (WHO). 2007. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd ed. World Health Organization. https://iris.who.int/handle/10665/43781 (Accessed 30 July 2024)

World Health Organization (WHO). 2013. Urinary iodine concentrations for determining iodine status in populations, Vitamin and Mineral Nutrition Information System. Geneva: *World Health Organization* https://www.who.int/publications/i/item/WHO-NMH-NHD-EPG-13.1 (Accessed 31 July 2024)

Wu W, Guo W, Zhang N, Gao M, Zhang K, Pearce EN, Li S, Ren Z, Yang Y, Wang C, et al. 2023. Adverse Effects on the Thyroid of Chinese Pregnant Women Exposed to Long-Term Iodine Excess: Optimal and Safe Tolerable Upper Intake Levels of Iodine. *Nutrients*. 15(7):1635.

Page 183 OFFICIAL